Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 23(7): 3030-3037, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36989531

RESUMO

Optical properties of nanoparticle assemblies reflect distinctive characteristics of their building blocks and spatial organization, giving rise to emergent phenomena. Integrated experimental and computational studies have established design principles connecting the structure to properties for assembled clusters and superlattices. However, conventional electromagnetic simulations are too computationally expensive to treat more complex assemblies. Here we establish a fast, materials agnostic method to simulate the optical response of large nanoparticle assemblies incorporating both structural and compositional complexity. This many-bodied, mutual polarization method resolves limitations of established approaches, achieving rapid, accurate convergence for configurations including thousands of nanoparticles, with some overlapping. We demonstrate these capabilities by reproducing experimental trends and uncovering far- and near-field mechanisms governing the optical response of plasmonic semiconductor nanocrystal assemblies including structurally complex gel networks and compositionally complex mixed binary superlattices. This broadly applicable framework will facilitate the design of complex, hierarchically structured, and dynamic assemblies for desired optical characteristics.

2.
J Chem Phys ; 158(2): 024903, 2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36641404

RESUMO

Gelation offers a powerful strategy to assemble plasmonic nanocrystal networks incorporating both the distinctive optical properties of constituent building blocks and customizable collective properties. Beyond what a single-component assembly can offer, the characteristics of nanocrystal networks can be tuned in a broader range when two or more components are intimately combined. Here, we demonstrate mixed nanocrystal gel networks using thermoresponsive metal-terpyridine links that enable rapid gel assembly and disassembly with thermal cycling. Plasmonic indium oxide nanocrystals with different sizes, doping concentrations, and shapes are reliably intermixed in linked gel assemblies, exhibiting collective infrared absorption that reflects the contributions of each component while also deviating systematically from a linear combination of the spectra for single-component gels. We extend a many-bodied, mutual polarization method to simulate the optical response of mixed nanocrystal gels, reproducing the experimental trends with no free parameters and revealing that spectral deviations originate from cross-coupling between nanocrystals with distinct plasmonic properties. Our thermoreversible linking strategy directs the assembly of mixed nanocrystal gels with continuously tunable far- and near-field optical properties that are distinct from those of the building blocks or mixed close-packed structures.

3.
Angew Chem Int Ed Engl ; 60(25): 13819-13823, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-33723888

RESUMO

A colorimetric indicator displacement assay (IDA) amenable to high-throughput experimentation was developed to determine the percentage of cis and trans alkenes. Using 96-well plates two steps are performed: a reaction plate for dihydroxylation of the alkenes followed by an IDA screening plate consisting of an indicator and a boronic acid. The dihydroxylation generates either erythro or threo vicinal diols from cis or trans alkenes, depending upon their syn- or anti-addition mechanisms. Threo diols preferentially associate with the boronic acid due to the creation of more stable boronate esters, thus displacing the indicator to a greater extent. The generality of the protocol was demonstrated using seven sets of cis and trans alkenes. Blind mixtures of cis and trans alkenes were made, resulting in an average error of ±2 % in the percentage of cis or trans alkenes, and implementing E2 and Wittig reactions gave errors of ±3 %. Furthermore, we developed variants of the IDA for which the color may be tuned to optimize the response for the human eye.


Assuntos
Alcenos/química , Colorimetria , Estrutura Molecular , Estereoisomerismo
4.
ACS Nano ; 17(23): 24218-24226, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38009590

RESUMO

Nanocrystal gels exhibit collective optical phenomena based on interactions among their constituent building blocks. However, their inherently disordered structures have made it challenging to understand, predict, or design properties such as optical absorption spectra that are sensitive to the coupling between the plasmon resonances of the individual nanocrystals. Here, we bring indium tin oxide nanocrystal gels under chemical control and show that their infrared absorption can be predicted and systematically tuned by selecting the nanocrystal sizes and compositions and molecular structures of the link-mediating surface ligands. Thermoreversible assemblies with metal-terpyridine links form reproducible gel architectures, enabling us to derive a plasmon ruler that governs the spectral shifts upon gelation, predicated on the nanocrystal and ligand compositions. This empirical guide is validated using large-scale, many-bodied simulations to compute the optical spectra of gels with varied structural parameters. Based on the derived plasmon ruler, we design and demonstrate a nanocrystal mixture whose spectrum exhibits distinctive line narrowing upon assembly.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA