RESUMO
15q13.3 microdeletion syndrome is characterized by a wide spectrum of neurodevelopmental disorders, including developmental delay, intellectual disability, epilepsy, language impairment, abnormal behaviors, neuropsychiatric disorders, and hypotonia. This syndrome is caused by a deletion on chromosome 15q, which typically encompasses six genes. Here, through studies on OTU deubiquitinase 7A (Otud7a) knockout mice, we identify OTUD7A as a critical gene responsible for many of the cardinal phenotypes associated with 15q13.3 microdeletion syndrome. Otud7a-null mice show reduced body weight, developmental delay, abnormal electroencephalography patterns and seizures, reduced ultrasonic vocalizations, decreased grip strength, impaired motor learning/motor coordination, and reduced acoustic startle. We show that OTUD7A localizes to dendritic spines and that Otud7a-null mice have decreased dendritic spine density compared to their wild-type littermates. Furthermore, frequency of miniature excitatory postsynaptic currents (mEPSCs) is reduced in the frontal cortex of Otud7a-null mice, suggesting a role of Otud7a in regulation of dendritic spine density and glutamatergic synaptic transmission. Taken together, our results suggest decreased OTUD7A dosage as a major contributor to the neurodevelopmental phenotypes associated with 15q13.3 microdeletion syndrome, through the misregulation of dendritic spine density and activity.
Assuntos
Transtornos Cromossômicos/enzimologia , Transtornos Cromossômicos/genética , Enzimas Desubiquitinantes/genética , Endopeptidases/genética , Deficiência Intelectual/enzimologia , Deficiência Intelectual/genética , Convulsões/enzimologia , Convulsões/genética , Potenciais de Ação , Animais , Sequência de Bases , Comportamento Animal , Deleção Cromossômica , Cromossomos Humanos Par 15/enzimologia , Cromossomos Humanos Par 15/genética , Espinhas Dendríticas/metabolismo , Modelos Animais de Doenças , Eletroencefalografia , Endopeptidases/deficiência , Epilepsia/enzimologia , Epilepsia/genética , Epilepsia/fisiopatologia , Feminino , Homozigoto , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Sinapses/metabolismoRESUMO
Copy-number variants (CNVs) of chromosome 15q13.3 manifest clinically as neuropsychiatric disorders with variable expressivity. CHRNA7, encoding for the α7 nicotinic acetylcholine receptor (nAChR), has been suggested as a candidate gene for the phenotypes observed. Here, we used induced pluripotent stem cells (iPSCs) and neural progenitor cells (NPCs) derived from individuals with heterozygous 15q13.3 deletions and heterozygous 15q13.3 duplications to investigate the CHRNA7-dependent molecular consequences of the respective CNVs. Unexpectedly, both deletions and duplications lead to decreased α7 nAChR-associated calcium flux. For deletions, this decrease in α7 nAChR-dependent calcium flux is expected due to haploinsufficiency of CHRNA7. For duplications, we found that increased expression of CHRNA7 mRNA is associated with higher expression of nAChR-specific and resident ER chaperones, indicating increased ER stress. This is likely a consequence of inefficient chaperoning and accumulation of α7 subunits in the ER, as opposed to being incorporated into functional α7 nAChRs at the cell membrane. Here, we showed that α7 nAChR-dependent calcium signal cascades are downregulated in both 15q13.3 deletion and duplication NPCs. While it may seem surprising that genomic changes in opposite direction have consequences on downstream pathways that are in similar direction, it aligns with clinical data, which suggest that both individuals with deletions and duplications of 15q13.3 manifest neuropsychiatric disease and cognitive deficits.