Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Adv Mater ; 35(52): e2304152, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37986204

RESUMO

Single-atom catalysis is a field of paramount importance in contemporary science due to its exceptional ability to combine the domains of homogeneous and heterogeneous catalysis. Iron and manganese metalloenzymes are known to be effective in C─H oxidation reactions in nature, inspiring scientists to mimic their active sites in artificial catalytic systems. Herein, a simple and versatile cation exchange method is successfully employed to stabilize low-cost iron and manganese single-atoms in poly(heptazine imides) (PHI). The resulting materials are employed as photocatalysts for toluene oxidation, demonstrating remarkable selectivity toward benzaldehyde. The protocol is then extended to the selective oxidation of different substrates, including (substituted) alkylaromatics, benzyl alcohols, and sulfides. Detailed mechanistic investigations revealed that iron- and manganese-containing photocatalysts work through a similar mechanism via the formation of high-valent M═O species. Operando X-ray absorption spectroscopy (XAS) is employed to confirm the formation of high-valent iron- and manganese-oxo species, typically found in metalloenzymes involved in highly selective C─H oxidations.

2.
Int J Biol Macromol ; 159: 1177-1185, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32416293

RESUMO

Chitosan is a natural polysaccharide widely used in biomedicine, for instance for wound dressing. Hydroxyapatite is a very bioactive calcium phosphate which, if modified with an appropriate element (iron Fe), can also have UV-absorbing properties. In this work, we report the study of films of chitosan incorporated with iron-modified hydroxyapatite of natural origin (from cod fish bones); this combination led to an innovative chitosan-based material with excellent and advanced functional properties. The films showed very high UV absorption (Ultraviolet Protection Factor (UPF) value higher than 50). This is the first time that a chitosan-based material has shown such high UV protection properties. The films also showed to be non-cytotoxic, and possessed antimicrobial activity towards both Gram-positive and negative strains. Their mechanical properties, optimised with an experimental design approach, confirmed their potential use as multifunctional wound dressing, capable of reducing bacterial infections and, at the same time, protecting from UV light.


Assuntos
Anti-Infecciosos/química , Curativos Hidrocoloides , Materiais Biocompatíveis/química , Quitosana/análogos & derivados , Durapatita/química , Protetores contra Radiação/química , Absorção de Radiação , Anti-Infecciosos/farmacologia , Materiais Biocompatíveis/farmacologia , Candida/efeitos dos fármacos , Células HaCaT , Humanos , Staphylococcus aureus/efeitos dos fármacos , Raios Ultravioleta/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA