Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39103079

RESUMO

OBJECTIVE: Obesity increases osteoarthritis (OA) risk due to adipose tissue dysfunction with associated metabolic syndrome and excess weight. Lipodystrophy syndromes exhibit systemic metabolic and inflammatory abnormalities similar to obesity without biomechanical overloading. Here, we used lipodystrophy mouse models to investigate the effects of systemic versus intra-articular adipose tissue dysfunction on the knee. METHODS: Intra-articular adipose tissue development was studied using reporter mice. Mice with selective lipodystrophy of intra-articular adipose tissue were generated by conditional knockout (cKO) of Bscl2 in Gdf5-lineage cells, and compared with whole-body Bscl2 knockout (KO) mice with generalised lipodystrophy and associated systemic metabolic dysfunction. OA was induced by surgically destabilising the medial meniscus (DMM) and obesity by high-fat diet (HFD). Gene expression was analysed by quantitative RT-PCR and tissues were analysed histologically. RESULTS: The infrapatellar fat pad (IFP), in contrast to overlying subcutaneous adipose tissue, developed from a template established from the Gdf5-expressing joint interzone during late embryogenesis, and was populated shortly after birth by adipocytes stochastically arising from Pdgfrα-expressing Gdf5-lineage progenitors. While female Bscl2 KO mice with generalised lipodystrophy developed spontaneous knee cartilage damage, Bscl2 cKO mice with intra-articular lipodystrophy did not, despite the presence of synovial hyperplasia and inflammation of the residual IFP. Furthermore, male Bscl2 cKO mice showed no worse cartilage damage after DMM. However, female Bscl2 cKO mice showed increased susceptibility to the cartilage-damaging effects of HFD-induced obesity. CONCLUSION: Our findings emphasise the prevalent role of systemic metabolic and inflammatory effects in impairing cartilage homeostasis, with a modulatory role for intra-articular adipose tissue.

2.
Ann Rheum Dis ; 81(2): 214-224, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34844926

RESUMO

OBJECTIVE: We aimed to understand the role of the transcriptional co-factor Yes-associated protein (Yap) in the molecular pathway underpinning the pathogenic transformation of synovial fibroblasts (SF) in rheumatoid arthritis (RA) to become invasive and cause joint destruction. METHODS: Synovium from patients with RA and mice with antigen-induced arthritis (AIA) was analysed by immunostaining and qRT-PCR. SF were targeted using Pdgfrα-CreER and Gdf5-Cre mice, crossed with fluorescent reporters for cell tracing and Yap-flox mice for conditional Yap ablation. Fibroblast phenotypes were analysed by flow cytometry, and arthritis severity was assessed by histology. Yap activation was detected using Yap-Tead reporter cells and Yap-Snail interaction by proximity ligation assay. SF invasiveness was analysed using matrigel-coated transwells. RESULTS: Yap, its binding partner Snail and downstream target connective tissue growth factor were upregulated in hyperplastic human RA and in mouse AIA synovium, with Yap detected in SF but not macrophages. Lineage tracing showed polyclonal expansion of Pdgfrα-expressing SF during AIA, with predominant expansion of the Gdf5-lineage SF subpopulation descending from the embryonic joint interzone. Gdf5-lineage SF showed increased expression of Yap and adopted an erosive phenotype (podoplanin+Thy-1 cell surface antigen-), invading cartilage and bone. Conditional ablation of Yap in Gdf5-lineage cells or Pdgfrα-expressing fibroblasts ameliorated AIA. Interleukin (IL)-6, but not tumour necrosis factor alpha (TNF-α) or IL-1ß, Jak-dependently activated Yap and induced Yap-Snail interaction. SF invasiveness induced by IL-6 stimulation or Snail overexpression was prevented by Yap knockdown, showing a critical role for Yap in SF transformation in RA. CONCLUSIONS: Our findings uncover the IL-6-Yap-Snail signalling axis in pathogenic SF in inflammatory arthritis.


Assuntos
Artrite Reumatoide/patologia , Fibroblastos/patologia , Membrana Sinovial/patologia , Proteínas de Sinalização YAP/metabolismo , Animais , Artrite Experimental/patologia , Artrite Reumatoide/metabolismo , Células Cultivadas , Fibroblastos/metabolismo , Humanos , Interleucina-6/metabolismo , Camundongos , Transdução de Sinais/fisiologia , Fatores de Transcrição da Família Snail/metabolismo , Membrana Sinovial/metabolismo
3.
Eukaryot Cell ; 14(7): 684-97, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26002719

RESUMO

The yeast exocyst is a multiprotein complex comprised of eight subunits (Sec3, Sec5, Sec6, Sec8, Sec10, Sec15, Exo70, and Exo84) which orchestrates trafficking of exocytic vesicles to specific docking sites on the plasma membrane during polarized secretion. To study SEC6 function in Candida albicans, we generated a conditional mutant strain in which SEC6 was placed under the control of a tetracycline-regulated promoter. In the repressed state, the tetR-SEC6 mutant strain (denoted tSEC6) was viable for up to 27 h; thus, all phenotypic analyses were performed at 24 h or earlier. Strain tSEC6 under repressing conditions had readily apparent defects in cytokinesis and endocytosis and accumulated both post-Golgi apparatus secretory vesicles and structures suggestive of late endosomes. Strain tSEC6 was markedly defective in secretion of aspartyl proteases and lipases as well as filamentation under repressing conditions. Lack of SEC6 expression resulted in markedly reduced lateral hyphal branching, which requires the establishment of a new axis of polarized secretion. Aberrant localization of chitin at the septum and increased resistance to zymolyase activity were observed, suggesting that C. albicans Sec6 plays an important role in mediating trafficking and delivery of cell wall components. The tSEC6 mutant was also markedly defective in macrophage killing, indicating a role of SEC6 in C. albicans virulence. Taken together, these studies indicate that the late secretory protein Sec6 is required for polarized secretion, hyphal morphogenesis, and the pathogenesis of C. albicans.


Assuntos
Candida albicans/crescimento & desenvolvimento , Candidíase/microbiologia , Parede Celular/metabolismo , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Hifas/crescimento & desenvolvimento , Macrófagos/patologia , Proteínas de Transporte Vesicular/metabolismo , Animais , Candida albicans/genética , Candida albicans/metabolismo , Candidíase/genética , Candidíase/metabolismo , Membrana Celular/metabolismo , Sobrevivência Celular , Exocitose/fisiologia , Proteínas Fúngicas/genética , Hifas/genética , Hifas/metabolismo , Macrófagos/microbiologia , Camundongos , Mutação/genética , Transporte Proteico , Vesículas Secretórias/metabolismo , Proteínas de Transporte Vesicular/genética , Virulência
4.
mSphere ; 9(8): e0046724, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39037263

RESUMO

Systemic candidiasis remains a significant public health concern worldwide, with high mortality rates despite available antifungal drugs. Drug-resistant strains add to the urgency for alternative therapies. In this context, vaccination has reemerged as a prominent immune-based strategy. Extracellular vesicles (EVs), nanosized lipid bilayer particles, carry a diverse array of native fungal antigens, including proteins, nucleic acids, lipids, and glycans. Previous studies from our laboratory demonstrated that Candida albicans EVs triggered the innate immune response, activating bone marrow-derived dendritic cells (BMDCs) and potentially acting as a bridge between innate and adaptive immunity. Vaccination with C. albicans EVs induced the production of specific antibodies, modulated cytokine production, and provided protection in immunosuppressed mice infected with lethal C. albicans inoculum. To elucidate the mechanisms underlying EV-induced immune activation, our study investigated pathogen-associated molecular patterns (PAMPs) and pattern recognition receptors (PRRs) involved in EVs-phagocyte engagement. EVs from wild-type and mutant C. albicans strains with truncated mannoproteins were compared for their ability to stimulate BMDCs. Our findings revealed that EV decoration with O- and N-linked mannans and the presence of ß-1,3-glucans and chitin oligomers may modulate the activation of specific PRRs, in particular Toll-like receptor 4 (TLR4) and dectin-1. The protective effect of vaccination with wild-type EVs was found to be dependent on TLR4. These results suggest that fungal EVs can be harnessed in vaccine formulations to selectively activate PRRs in phagocytes, offering potential avenues for combating or preventing candidiasis.IMPORTANCESystemic candidiasis is a serious global health concern with high mortality rates and growing drug resistance. Vaccination offers a promising solution. A unique approach involves using tiny lipid-coated particles called extracellular vesicles (EVs), which carry various fungal components. Previous studies found that Candida albicans EVs activate the immune response and may bridge the gap between innate and adaptive immunity. To understand this better, we investigated how these EVs activate immune cells. We demonstrated that specific components on EV surfaces, such as mannans and glucans, interact with receptors on immune cells, including Toll-like receptor 4 (TLR4) and dectin-1. Moreover, vaccinating with these EVs led to strong immune responses and full protection in mice infected with Candida. This work shows how harnessing fungal EVs might lead to effective vaccines against candidiasis.


Assuntos
Candida albicans , Candidíase , Células Dendríticas , Vesículas Extracelulares , Vacinas Fúngicas , Receptores de Reconhecimento de Padrão , Receptor 4 Toll-Like , Animais , Candida albicans/imunologia , Vesículas Extracelulares/imunologia , Receptor 4 Toll-Like/imunologia , Receptor 4 Toll-Like/metabolismo , Camundongos , Candidíase/imunologia , Candidíase/prevenção & controle , Candidíase/microbiologia , Vacinas Fúngicas/imunologia , Vacinas Fúngicas/administração & dosagem , Células Dendríticas/imunologia , Receptores de Reconhecimento de Padrão/imunologia , Camundongos Endogâmicos C57BL , Feminino , Imunidade Inata , Modelos Animais de Doenças
6.
Cell Surf ; 6: 100042, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33364531

RESUMO

We designed experiments to assess whether fungal cell wall mannans function as an immune shield or an immune agonist. Fungal cell wall ß-(1,3)-glucan normally plays a major and dominant role in immune activation. The outer mannan layer has been variously described as an immune shield, because it has the potential to mask the underlying ß-(1,3)-glucan, or an immune activator, as it also has the potential to engage with a wide range of mannose detecting PRRs. To resolve this conundrum we examined species-specific differences in host immune recognition in the och1Δ N-mannosylation-deficient mutant background in four species of yeast-like fungi. Irrespective of the fungal species, the cytokine response (TNFα and IL-6) induced by the och1Δ mutants in human monocytes was reduced compared to that of the wild type. In contrast, TNFα production induced by och1Δ was increased, relative to wild type, due to increased ß-glucan exposure, when mouse or human macrophages were used. These observations suggest that N-mannan is not a major PAMP for macrophages and that in these cells mannan does shield the fungus from recognition of the inner cell wall ß-glucan. However, N-mannan is a significant inducer of cytokine for monocytes. Therefore the metaphor of the fungal "mannan shield" can only be applied to some, but not all, myeloid cells used in immune profiling experiments of fungal species.

7.
Cell Surf ; 3: 12-25, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30370375

RESUMO

The rise of widespread antifungal resistance fuels the need to explore new classes of inhibitory molecules as potential novel inhibitors. Recently a plant natural product poacic acid (PA) was shown to inhibit ß-1,3-glucan synthesis, and to have antifungal activity against a range of plant pathogens and against Saccharomyces cerevisiae. As with the echinocandins, such as caspofungin, PA targets the synthesis of cell wall ß-1,3-glucan and has potential utility in the treatment of medically important fungi. However, the antifungal activity of PA against human pathogenic Candida species has not been explored and the precise mode of action of this compound is not understood. Here, we show that PA sensitivity is regulated by the calcineurin pathway and that susceptibility to PA varied significantly between Candida species, but did not correlate with in vitro ß-glucan synthase activity, cell wall ß-glucan content or the sensitivity of the species to caspofungin. Strains with point mutations (S645Y or S645P) in the hotspot1 region of the ß-1,3-glucan synthase subunit Fks1, had decreased sensitivity to caspofungin but increased sensitivity to PA. C. guilliermondii, C. orthopsilosis, and C. parapsilosis were more sensitive to PA than C. albicans, C. dubliniensis, C. tropicalis, and C. glabrata. These observations suggest that there are significant differences in the mode of action of PA and caspofungin and that PA or PA analogues are not likely to have broad spectrum activity in the treatment of Candida infections.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA