RESUMO
BACKGROUND: Torsade de pointes is a potentially lethal polymorphic ventricular tachyarrhythmia that can occur in the setting of long QT syndrome (LQTS). LQTS is multi-hit in nature and multiple factors combine their effects leading to increased arrhythmic risk. While hypokalemia and multiple medications are accounted for in LQTS, the arrhythmogenic role of systemic inflammation is increasingly recognized but often overlooked. We tested the hypothesis that the inflammatory cytokine interleukin(IL)-6 will significantly increase the incidence of arrhythmia when combined with other pro-arrhythmic conditions (hypokalemia and the psychotropic medication, quetiapine). METHODS: Guinea pigs were injected intraperitoneally with IL-6/soluble IL-6 receptor and QT changes were measured in vivo. Subsequently, hearts were cannulated via Langendorff perfusion for ex vivo optical mapping measurements of action potential duration (APD90) and arrhythmia inducibility. Computer simulations (MATLAB) were performed to investigate IKr inhibition at varying IL-6 and quetiapine concentrations. RESULTS: IL-6 prolonged QTc in vivo guinea pigs from 306.74 ± 7.19 ms to 332.60 ± 8.75 ms (n = 8, p = .0021). Optical mapping on isolated hearts demonstrated APD prolongation in IL-6- vs saline groups (3Hz APD90:179.67 ± 2.47 ms vs 153.5 ± 7.86 ms, p = .0357). When hypokalemia was introduced, the APD90 increased to 195.8 ± 5.02 ms[IL-6] and 174.57 ± 10.7 ms[saline] (p = .2797), and when quetiapine was added to hypokalemia to 207.67 ± 3.03 ms[IL-6] and 191.37 ± 9.49 ms[saline] (p = .2449). After the addition of hypokalemia ± quetiapine, arrhythmia was induced in 75% of IL-6-treated hearts (n = 8), while in none of the control hearts (n = 6). Computer simulations demonstrated spontaneous depolarizations at â¼83% aggregate IKr inhibition. CONCLUSIONS: Our experimental observations strongly suggest that controlling inflammation, specifically IL-6, could be a viable and important route for reducing QT prolongation and arrhythmia incidence in the clinical setting.
Assuntos
Hipopotassemia , Síndrome do QT Longo , Torsades de Pointes , Animais , Cobaias , Torsades de Pointes/induzido quimicamente , Citocinas , Fumarato de Quetiapina , Interleucina-6 , Arritmias Cardíacas , Síndrome do QT Longo/induzido quimicamente , Inflamação/complicações , EletrocardiografiaRESUMO
INTRODUCTION: Successful initiation of spiral wave reentry in the neonatal rat ventricular myocyte (NRVM) monolayer implicitly assumes the presence of spatial dispersion of repolarization (DR), which is difficult to quantify. We recently introduced a NRVM monolayer that utilizes anthopleurin-A to impart a prolonged plateau to the NRVM action potential. This was associated with a significant degree of spatial DR that lends itself to accurate quantification. METHODS AND RESULTS: We utilized the monolayer and fluorescence optical mapping of intracellular calcium transients (FCai ) to systematically study and compare the contribution of spatial dispersion of the duration of FCai (as a surrogate of DR) to induction of spiral wave reentry around a functional core versus reentry around a fixed anatomical obstacle. We show that functional reentry could be initiated by a premature stimulus acting on a substrate of spatial DR resulting in a functional line of propagation block. Subsequent wave fronts circulated around a central core of functional obstacle created by sustained depolarization from the circulating wave front. Both initiation and termination of spiral wave reentry around an anatomical obstacle consistently required participation of a region of functional propagation block. This region was similarly based on spatial DR. Spontaneous termination of spiral wave reentry also resulted from block in the functional component of the circuit obstacle, usually preceded by beat-to-beat slowing of propagation. CONCLUSIONS: The study demonstrates the critical contribution of DR to spiral wave reentry around a purely functional core as well as reentry around a fixed anatomical core.
Assuntos
Miócitos Cardíacos/fisiologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Fluorescência , Peptídeos e Proteínas de Sinalização Intercelular , Modelos Animais , Ratos , Ratos Sprague-Dawley , Imagens com Corantes Sensíveis à Voltagem/métodosRESUMO
BACKGROUND: Myotonic dystrophy type 1 (DM1) is a multiorgan disorder with significant cardiac involvement. ECG abnormalities, including arrhythmias, occur in 80â¯% of DM1 patients and are the second-most common cause of death after respiratory complications; however, the mechanisms underlying the arrhythmogenesis remain unclear. The objective of this study was to investigate the basis of the electrophysiological abnormalities in DM1 using the DMSXL mouse model. METHODS: ECG parameters were evaluated at baseline and post flecainide challenge. Calcium transient and action potential parameters were evaluated in Langendorff-perfused hearts using fluorescence optical mapping. Calcium transient/sparks were evaluated in ventricular myocytes via confocal microscopy. Protein and mRNA levels for calcium handling proteins were evaluated using western blot and RT-qPCR, respectively. RESULTS: DMSXL mice showed arrhythmic events on ECG including premature ventricular contractions and sinus block. DMSXL mice showed increased calcium transient time to peak without any change to voltage parameters. Calcium alternans and both sustained and non-sustained ventricular tachyarrhythmias were readily inducible in DMSXL mice. The confocal experiments also showed calcium transient alternans and increased frequency of calcium sparks in DMSXL cardiomyocytes. These calcium abnormalities were correlated with increased RyR2 phosphorylation without changes to the other calcium handling proteins. CONCLUSIONS: The DMSXL mouse model of DM1 exhibited enhanced arrhythmogenicity associated with abnormal intracellular calcium handling due to hyperphosphorylation of RyR2, pointing to RyR2 as a potential new therapeutic target in DM1 treatment.
RESUMO
BACKGROUND: Although accumulating data indicate that IL-6 (interleukin-6) can promote heart rate-corrected QT interval (QTc) prolongation via direct and indirect effects on cardiac electrophysiology, current evidence comes from basic investigations and small clinical studies only. Therefore, IL-6 is still largely ignored in the clinical management of long-QT syndrome and related arrhythmias. The aim of this study was to estimate the risk of QTc prolongation associated with elevated IL-6 levels in a large population of unselected subjects. METHODS AND RESULTS: An observational study using the Veterans Affairs Informatics and Computing Infrastructure was performed. Participants were US veterans who had an ECG and were tested for IL-6. Descriptive statistics and univariate and multivariate regression analyses were performed to study the relationship between IL-6 and QTc prolongation risk. Study population comprised 1085 individuals, 306 showing normal (<5 pg/mL), 376 moderately high (5-25 pg/mL), and 403 high (>25 pg/mL) IL-6 levels. Subjects with elevated IL-6 showed a concentration-dependent increase in the prevalence of QTc prolongation, and those presenting with QTc prolongation exhibited higher circulating IL-6 levels. Stepwise multivariate regression analyses demonstrated that increased IL-6 level was significantly associated with a risk of QTc prolongation up to 2 times the odds of the reference category of QTc (e.g. QTc >470 ms men/480 ms women ms: odds ratio, 2.28 [95% CI, 1.12-4.50] for IL-6 >25 pg/mL) regardless of the underlying cause. Specifically, the mean QTc increase observed in the presence of elevated IL-6 was quantitatively comparable (IL-6 >25 pg/mL:+6.7 ms) to that of major recognized QT-prolonging risk factors, such as hypokalemia and history of myocardial infarction. CONCLUSIONS: Our data provide evidence that a high circulating IL-6 level is a robust risk factor for QTc prolongation in a large cohort of US veterans, supporting a potentially important arrhythmogenic role for this cytokine in the general population.
Assuntos
Síndrome do QT Longo , Veteranos , Masculino , Humanos , Feminino , Interleucina-6 , Síndrome do QT Longo/diagnóstico , Síndrome do QT Longo/epidemiologia , Síndrome do QT Longo/etiologia , Fatores de Risco , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/epidemiologia , Arritmias Cardíacas/complicações , EletrocardiografiaRESUMO
Optical mapping is a powerful imaging technique widely adopted to measure membrane potential changes and intracellular Ca2+ variations in excitable tissues using voltage-sensitive dyes and Ca2+ indicators, respectively. This powerful tool has rapidly become indispensable in the field of cardiac electrophysiology for studying depolarization wave propagation, estimating the conduction velocity of electrical impulses, and measuring Ca2+ dynamics in cardiac cells and tissues. In addition, mapping these electrophysiological parameters is important for understanding cardiac arrhythmia mechanisms. In this review, we delve into the fundamentals of cardiac optical mapping technology and its applications when applied to hiPSC-derived cardiomyocytes and discuss related advantages and challenges. We also provide a detailed description of the processing and analysis of optical mapping data, which is a crucial step in the study of cardiac diseases and arrhythmia mechanisms for extracting and comparing relevant electrophysiological parameters.
Assuntos
Cardiopatias , Células-Tronco Pluripotentes Induzidas , Humanos , Miócitos Cardíacos , Eletrofisiologia Cardíaca , CorantesRESUMO
Introduction: Myotonic dystrophy type 1 (DM1) is a multisystemic genetic disorder caused by the increased number of CTG repeats in 3' UTR of Dystrophia Myotonia Protein Kinase (DMPK) gene. DM1 patients experience conduction abnormalities as well as atrial and ventricular arrhythmias with increased susceptibility to sudden cardiac death. The ionic basis of these electrical abnormalities is poorly understood. Methods: We evaluated the surface electrocardiogram (ECG) and key ion currents underlying the action potential (AP) in a mouse model of DM1, DMSXL, which express over 1000 CTG repeats. Sodium current (INa), L-type calcium current (ICaL), transient outward potassium current (Ito), and APs were recorded using the patch-clamp technique. Results: Arrhythmic events on the ECG including sinus bradycardia, conduction defects, and premature ventricular and atrial arrhythmias were observed in DMSXL homozygous mice but not in WT mice. PR interval shortening was observed in homozygous mice while ECG parameters such as QRS duration, and QTc did not change. Further, flecainide prolonged PR, QRS, and QTc visually in DMSXL homozygous mice. At the single ventricular myocyte level, we observed a reduced current density for Ito and ICaL with a positive shift in steady state activation of L-type calcium channels carrying ICaL in DMSXL homozygous mice compared with WT mice. INa densities and action potential duration did not change between DMSXL and WT mice. Conclusion: The reduced current densities of Ito, and ICaL and alterations in gating properties in L-type calcium channels may contribute to the ECG abnormalities in the DMSXL mouse model of DM1. These findings open new avenues for novel targeted therapeutics.
RESUMO
Inflammatory diseases including COVID-19 are associated with a cytokine storm characterized by high interleukin-6 (IL-6) titers. In particular, while recent studies examined COVID-19 associated arrhythmic risks from cardiac injury and/or from pharmacotherapy such as the combination of azithromycin (AZM) and hydroxychloroquine (HCQ), the role of IL-6 per se in increasing the arrhythmic risk remains poorly understood. The objective is to elucidate the electrophysiological basis of inflammation-associated arrhythmic risk in the presence of AZM and HCQ. IL-6, AZM and HCQ were concomitantly administered to guinea pigs in-vivo and in-vitro. Electrocardiograms, action potentials and ion-currents were analyzed. IL-6 alone or the combination AZM + HCQ induced mild to moderate reduction in heart rate, PR-interval and corrected QT (QTc) in-vivo and in-vitro. Notably, IL-6 alone was more potent than the combination of the two drugs in reducing heart rate, increasing PR-interval and QTc. In addition, the in-vivo or in-vitro combination of IL-6 + AZM + HCQ caused severe bradycardia, conduction abnormalities, QTc prolongation and asystole. These electrocardiographic abnormalities were attenuated in-vivo by tocilizumab (TCZ), a monoclonal antibody against IL-6 receptor, and are due in part to the prolongation of action potential duration and selective inhibition of Na+, Ca2+ and K+ currents. Inflammation confers greater risk for arrhythmia than the drug combination therapy. As such, in the setting of elevated IL-6 during inflammation caution must be taken when co-administering drugs known to predispose to fatal arrhythmias and TCZ could be an important player as a novel anti-arrhythmic agent. Thus, identifying inflammation as a critical culprit is essential for proper management.
Assuntos
Arritmias Cardíacas , Azitromicina/farmacologia , Tratamento Farmacológico da COVID-19 , COVID-19 , Hidroxicloroquina/farmacologia , Interleucina-6/metabolismo , SARS-CoV-2/metabolismo , Animais , Anticorpos Monoclonais Humanizados/farmacologia , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatologia , Arritmias Cardíacas/prevenção & controle , COVID-19/complicações , COVID-19/metabolismo , COVID-19/fisiopatologia , Feminino , Cobaias , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/fisiopatologia , Interleucina-6/antagonistas & inibidores , MasculinoRESUMO
BACKGROUND: Clinical experience showed that the majority of Torsade de Pointes (TdP) ventricular tachyarrhythmia (VT) in patients with long QT syndrome (LQTS) are self-terminating (ST), but the few that are non-self-terminating (NST) are potentially fatal. A paramount issue in clinical arrhythmology is to understand the electrophysiological mechanism of ST vs. NST TdP VT. METHODS: We investigated the electrophysiological mechanism of ST vs. NST TdP VT in the guinea pig Anthopleurin-A experimental model of LQTS, a close surrogate model of congenital LQT3. We utilized simultaneous optical recordings of membrane voltage (V m ) and intracellular calcium (Ca i ) and a robust analytical method based on spatiotemporal entropy difference (E d ) to investigate the hypothesis that early V m /Ca i uncoupling during TdP VT can play a primary role in perpetuation of VT episodes. RESULTS: We analyzed a total of 35 episodes of TdP VT from 14 guinea pig surrogate models of LQTS, including 23 ST and 12 NST VTs. E d values for NST VT were significantly higher than E d values for ST VT. Analysis of wave front topology during the early phase of ST VT showed the Ca i wave front following closely V m wave front consistent with a lower degree of E d . In contrast, NST VT was associated with uncoupling of V m /Ca i wave fronts during the first 2 or 3 cycles of VT associated with early wave break propagation pattern. CONCLUSIONS: Utilizing a robust analytical method we showed that, in comparison to ST TdP VT, NST VT was consistently predated by early uncoupling of V m /Ca i that destabilized wave front propagation and can explain a sustained complex reentrant excitation pattern.
RESUMO
Background Recent data suggest that systemic inflammation can negatively affect atrioventricular conduction, regardless of acute cardiac injury. Indeed, gap-junctions containing connexin43 coupling cardiomyocytes and inflammation-related cells (macrophages) are increasingly recognized as important factors regulating the conduction in the atrioventricular node. The aim of this study was to evaluate the acute impact of systemic inflammatory activation on atrioventricular conduction, and elucidate underlying mechanisms. Methods and Results We analyzed: (1) the PR-interval in patients with inflammatory diseases of different origins during active phase and recovery, and its association with inflammatory markers; (2) the existing correlation between connexin43 expression in the cardiac tissue and peripheral blood mononuclear cells (PBMC), and the changes occurring in patients with inflammatory diseases over time; (3) the acute effects of interleukin(IL)-6 on atrioventricular conduction in an in vivo animal model, and on connexin43 expression in vitro. In patients with elevated C-reactive protein levels, atrioventricular conduction indices are increased, but promptly normalized in association with inflammatory markers reduction, particularly IL-6. In these subjects, connexin43 expression in PBMC, which is correlative of that measured in the cardiac tissue, inversely associated with IL-6 changes. Moreover, direct IL-6 administration increased atrioventricular conduction indices in vivo in a guinea pig model, and IL-6 incubation in both cardiomyocytes and macrophages in culture, significantly reduced connexin43 proteins expression. Conclusions The data evidence that systemic inflammation can acutely worsen atrioventricular conduction, and that IL-6-induced down-regulation of cardiac connexin43 is a mechanistic pathway putatively involved in the process. Though reversible, these alterations could significantly increase the risk of severe atrioventricular blocks during active inflammatory processes.