RESUMO
Due to the presence of air turbulence in free-space optical (FSO) links, random fluctuations in wavefront phase and amplitude of the optical signal are reduced after it propagates through the air channel, which degrades the performance of free-space optical communication (FSOC) systems. Phase screen reflects the phase distortions resulting from air turbulence. Accordingly, accurate prediction with respect to phase screen is of significance for the FSOC. In this paper, we propose a phase screen prediction method based on the deep phase network (DPN). The advantages of the proposed method include strong robustness against air turbulence, low model depth, and fewer parameters as well as low complexity. The results reveal that our DPN enables desired inference accuracy and faster inference speed compared with the existing models, by combining the mean square deviation loss function with the pixel penalty terms. More concretely, the accuracy of phase screen prediction can reach up to 95%; further, the average time consumed to predict the phase screen is in the order of milliseconds only under various turbulence conditions. Also, our DPN outperforms the traditional Gerchberg-Saxton algorithm in convergence speed.
RESUMO
As a continuation of our previous work [Appl. Opt.54, 1453 (2015)APOPAI0003-693510.1364/AO.54.001453] in which we have studied the performance of coherent free space optical (FSO) communication systems operating over a horizontal path, in this paper we study the coherent FSO system operating over a general slant path. We evaluated system bit-error-rate (BER) in the case when the quadrature phase-shift keying (QPSK) modulation format is applied and when an adaptive optics (AO) system is employed to mitigate the air turbulence effects for both maritime and terrestrial air transmission scenarios. We adopted a multiple-layer scheme to efficiently model the FSO slant-path links. The atmospheric channel fading was characterized by the wavefront phase distortions and the log-amplitude fluctuations. We derived analytical expressions to characterize log-amplitude fluctuations of air turbulence by asserting the aperture averaging within the frame of the multiple-layer model. The obtained results showed that use of AO enabled improvement of system performance for both uplinks and downlinks, and also revealed that it is more beneficial for the FSO downlinks. Also, AO employment brought larger enhancements in BER performance for the maritime slant-path FSO links than for the terrestrial ones, with an additional striking increase in performance when the AO correction is combined with the aperture averaging.
RESUMO
We evaluate the performance of the coherent free space optics (FSO) employing quadrature array phase-shift keying (QPSK) modulation over the maritime atmosphere with atmospheric turbulence compensated by use of adaptive optics (AO). We have established a comprehensive FSO channel model for maritime conditions and also made a comprehensive comparison of performance between the maritime and terrestrial atmospheric links. The FSO links are modeled based on the intensity attenuation resulting from scattering and absorption effects, the log-amplitude fluctuations, and the phase distortions induced by turbulence. The obtained results show that the FSO system performance measured by the bit-error-rate (BER) can be significantly improved when the optimization of the AO system is achieved. Also, we find that the higher BER is observed in the maritime FSO channel with atmospheric turbulence, as compared to the terrestrial FSO systems if they experience the same turbulence strength.
RESUMO
We experimentally demonstrate a novel unified direct and coherent orthogonal frequency division multiplexing (OFDM) scheme. This self-coherent OFDM scheme simplifies receiver architecture and provides interchangeability between direct and coherent receivers using the same unified transmitter. We have experimentally verified the resilience of this scheme to fiber nonlinearities and achieved receiver sensitivity improvement of up to 1.73 dB as compared to the conventional intensity modulation and direct detection OFDM scheme. We have also verified the effectiveness of a dual-analyzer-based balanced detection scheme.
RESUMO
There has been an increased interest in enhancing the security of optical communications systems and networks. All-optical cryptography methods have been considered as an alternative to electronic data encryption. In this paper we propose and verify the use of a novel all-optical scheme based on cryptographic keys applied on the spectral signal for encryption of the M-QAM modulated data with bit rates of up to 200 gigabits per second.
RESUMO
We have evaluated the channel capacity of OAM-based FSO link under a strong atmospheric turbulence regime when adaptive optics (AO) are employed to correct the wavefront phase distortions of OAM modes. The turbulence is emulated by the Monte-Carlo phase screen method, which is validated by comparison with the theoretical phase structure function. Based on that, a closed-loop AO system with the capability of real-time correction is designed and validated. The simulation results show that the phase distortions of OAM modes induced by turbulence can be significantly compensated by the real-time correction of the properly designed AO. Furthermore, the crosstalk across channels is reduced drastically, while a substantial enhancement of channel capacity can be obtained when AO is deployed.
RESUMO
The recent introduction of optical OFDM and spatial MIMO techniques has led to considerable increases in spectral efficiency and aggregate throughput for future optical networks. However, these spatial and spectral domains can also be exploited for next-generation elastic optical networking. In this paper, we introduce the first hierarchy for dynamic multidimensional spatial and spectral optical networking and complement it with adaptive coded-modulation to form the basis of a novel elastic networking concept.
RESUMO
Record 1.92-Tb/s (40λ × 48 Gb/s/λ) coherent DWDM-OFDMA-PON without high-speed ONU-side ADCs/DACs/DSP/RF clock sources is demonstrated over 100 km straight SSMF with a 1:64 passive split. Novel optical-domain OFDMA sub-band selection, coherent detection, and simple RF components are exploited. As the first experimental verification of a next-generation optical platform capable of delivering 1 Gb/s to 1000(+) users over 100 km, the new architecture is promising for future optical access/metro systems.