Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Int J Mol Sci ; 23(14)2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35886882

RESUMO

Sleeping Beauty (SB) is the first DNA transposon employed for efficient transposition in vertebrate cells, opening new applications for genetic engineering and gene therapies. A transposon-based gene delivery system holds the favourable features of non-viral vectors and an attractive safety profile. Here, we employed SB to engineer HEK293 cells for optimizing the production of a chimpanzee Adenovector (chAd) belonging to the Human Mastadenovirus C species. To date, chAd vectors are employed in several clinical settings for infectious diseases, last but not least COVID-19. A robust, efficient and quick viral vector production could advance the clinical application of chAd vectors. To this aim, we firstly swapped the hAd5 E1 with chAd-C E1 gene by using the CRISPR/Cas9 system. We demonstrated that in the absence of human Ad5 E1, chimp Ad-C E1 gene did not support HEK293 survival. To improve chAd-C vector production, we engineered HEK293 cells to stably express the chAd-C precursor terminal protein (ch.pTP), which plays a crucial role in chimpanzee Adenoviral DNA replication. The results indicate that exogenous ch.pTP expression significantly ameliorate the packaging and amplification of recombinant chAd-C vectors thus, the engineered HEK293ch.pTP cells could represent a superior packaging cell line for the production of these vectors.


Assuntos
COVID-19 , Pan troglodytes , Adenoviridae/genética , Animais , Elementos de DNA Transponíveis/genética , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Células HEK293 , Humanos , Pan troglodytes/genética
2.
Int J Mol Sci ; 23(22)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36430709

RESUMO

STING is a transmembrane ER resident protein that was initially described as a regulator of innate immune response triggered by viral DNA and later found to be involved in a broader range of immune processes. Here, we assessed its role in the antigen presentation by generating a STING KO macrophage cell line. In the absence of STING, we observed an impaired OVA-derived SIINFEKL peptide presentation together with a decreased level of MHC-I complex on the plasma membrane, likely due to a decreased mRNA expression of ß2 m light chain as no relevant alterations of the peptide-loading complex (TAPs) were found. Moreover, JAK-STAT signaling resulted in impaired STING KO cells following OVA and LPS treatments, suggesting a dampened activation of immune response. Our data revealed a new molecular role of STING in immune mechanisms that could elucidate its role in the pathogenesis of autoimmune disorders and cancer.


Assuntos
Apresentação de Antígeno , Macrófagos , Animais , Camundongos , Macrófagos/metabolismo , Transdução de Sinais , Imunidade Inata , Antígenos de Histocompatibilidade , Proteínas de Membrana/metabolismo
3.
Mol Ther Oncol ; 32(1): 200766, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38596301

RESUMO

Cancer immunotherapy requires a specific antitumor CD8+ T cell-driven immune response; however, upon genetic and epigenetic alterations of the antigen processing and presenting components, cancer cells escape the CD8+ T cell recognition. As a result, poorly immunogenic tumors are refractory to conventional immunotherapy. In this context, the use of viral cancer vaccines in combination with hypomethylating agents represents a promising strategy to prevent cancer from escaping immune system recognition. In this study, we evaluated the sensitivity of melanoma (B16-expressing ovalbumin) and metastatic triple-negative breast cancer (4T1) cell lines to FDA-approved low-dose decitabine in combination with PeptiCRAd, an adenoviral anticancer vaccine. The two models showed different sensitivity to decitabine in vitro and in vivo when combined with PeptiCRAd. In particular, mice bearing syngeneic 4T1 cancer showed higher tumor growth control when receiving the combinatorial treatment compared to single controls in association with a higher expression of MHC class I on cancer cells and reduction in Tregs within the tumor microenvironment. Furthermore, remodeling of the CD8+ T cell infiltration and cytotoxic activity toward cancer cells confirmed the effect of decitabine in enhancing anticancer vaccines in immunotherapy regimens.

4.
J Immunother Cancer ; 12(3)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38458776

RESUMO

BACKGROUND: Cancer immunotherapy relies on using the immune system to recognize and eradicate cancer cells. Adaptive immunity, which consists of mainly antigen-specific cytotoxic T cells, plays a pivotal role in controlling cancer progression. However, innate immunity is a necessary component of the cancer immune response to support an immunomodulatory state, enabling T-cell immunosurveillance. METHODS: Here, we elucidated and exploited innate immune cells to sustain the generation of antigen-specific T cells on the use of our cancer vaccine platform. We explored a previously developed oncolytic adenovirus (AdCab) encoding for a PD-L1 (Programmed-Death Ligand 1) checkpoint inhibitor, which consists of a PD-1 (Programmed Cell Death Protein 1) ectodomain fused to an IgG/A cross-hybrid Fc. We coated AdCab with major histocompatibility complex (MHC-I)-restricted tumor peptides, generating a vaccine platform (named PeptiCab); the latter takes advantage of viral immunogenicity, peptide cancer specificity to prime T-cell responses, and antibody-mediated effector functions. RESULTS: As proof of concept, PeptiCab was used in murine models of melanoma and colon cancer, resulting in tumor growth control and generation of systemic T-cell-mediated antitumor responses. In specific, PeptiCab was able to generate antitumor T effector memory cells able to secrete various inflammatory cytokines. Moreover, PeptiCab was able to polarize neutrophils to attain an antigen-presenting phenotype by upregulating MHC-II, CD80 and CD86 resulting in an enhanced T-cell expansion. CONCLUSION: Our data suggest that exploiting innate immunity activates T-cell antitumor responses, enhancing the efficiency of a vaccine platform based on oncolytic adenovirus coated with MHC-I-restricted tumor peptides.


Assuntos
Neoplasias , Receptores de IgG , Humanos , Animais , Camundongos , Imunidade Adaptativa , Linfócitos T Citotóxicos , Citocinas/metabolismo , Neoplasias/terapia , Neoplasias/patologia
5.
Oncoimmunology ; 13(1): 2407532, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39351443

RESUMO

Immunotherapy has emerged as a promising approach for cancer treatment, with oncolytic adenoviruses showing power as immunotherapeutic agents. In this study, we investigated the immunotherapeutic potential of an adenovirus construct expressing CXCL9, CXCL10, or IL-15 in clear cell renal cell carcinoma (ccRCC) tumor models. Our results demonstrated robust cytokine secretion upon viral treatment, suggesting effective transgene expression. Subsequent analysis using resistance-based transwell migration and microfluidic chip assays demonstrated increased T-cell migration in response to chemokine secretion by infected cells in both 2D and 3D cell models. Flow cytometry analysis revealed CXCR3 receptor expression across T-cell subsets, with the highest percentage found on CD8+ T-cells, underscoring their key role in immune cell migration. Alongside T-cells, we also detected NK-cells in the tumors of immunocompromised mice treated with cytokine-encoding adenoviruses. Furthermore, we identified potential immunogenic antigens that may enhance the efficacy and specificity of our armed oncolytic adenoviruses in ccRCC. Overall, our findings using ccRCC cell line, in vivo humanized mice, physiologically relevant PDCs in 2D and patient-derived organoids (PDOs) in 3D suggest that chemokine-armed adenoviruses hold promise for enhancing T-cell migration and improving immunotherapy outcomes in ccRCC. Our study contributes to the development of more effective ccRCC treatment strategies by elucidating immune cell infiltration and activation mechanisms within the tumor microenvironment (TME) and highlights the usefulness of PDOs for predicting clinical relevance and validating novel immunotherapeutic approaches. Overall, our research offers insights into the rational design and optimization of viral-based immunotherapies for ccRCC.


Assuntos
Adenoviridae , Carcinoma de Células Renais , Neoplasias Renais , Carcinoma de Células Renais/imunologia , Carcinoma de Células Renais/terapia , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/genética , Humanos , Animais , Neoplasias Renais/imunologia , Neoplasias Renais/terapia , Neoplasias Renais/patologia , Neoplasias Renais/genética , Camundongos , Adenoviridae/genética , Adenoviridae/imunologia , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Terapia Viral Oncolítica/métodos , Imunoterapia/métodos , Quimiocina CXCL9/genética , Quimiocina CXCL9/metabolismo , Quimiocina CXCL9/imunologia , Movimento Celular , Quimiocina CXCL10/genética , Quimiocina CXCL10/metabolismo , Quimiocina CXCL10/imunologia , Citocinas/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Interleucina-15/genética , Interleucina-15/metabolismo , Interleucina-15/imunologia , Receptores CXCR3/metabolismo , Receptores CXCR3/genética , Vírus Oncolíticos/genética , Vírus Oncolíticos/imunologia , Linfócitos T CD8-Positivos/imunologia
6.
Sci Rep ; 10(1): 18850, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33139812

RESUMO

The mammalian high mobility group protein AT-hook 2 (HMGA2) is a multi-functional DNA-binding protein that plays important roles in tumorigenesis and adipogenesis. Previous results showed that HMGA2 is a potential therapeutic target of anticancer and anti-obesity drugs by inhibiting its DNA-binding activities. Here we report the development of a miniaturized, automated AlphaScreen ultra-high-throughput screening assay to identify inhibitors targeting HMGA2-DNA interactions. After screening the LOPAC1280 compound library, we identified several compounds that strongly inhibit HMGA2-DNA interactions including suramin, a century-old, negatively charged antiparasitic drug. Our results show that the inhibition is likely through suramin binding to the "AT-hook" DNA-binding motifs and therefore preventing HMGA2 from binding to the minor groove of AT-rich DNA sequences. Since HMGA1 proteins also carry multiple "AT-hook" DNA-binding motifs, suramin is expected to inhibit HMGA1-DNA interactions as well. Biochemical and biophysical studies show that charge-charge interactions and hydrogen bonding between the suramin sulfonated groups and Arg/Lys residues play critical roles in the binding of suramin to the "AT-hook" DNA-binding motifs. Furthermore, our results suggest that HMGA2 may be one of suramin's cellular targets.


Assuntos
Proteínas de Ligação a DNA/antagonistas & inibidores , Proteína HMGA1a/antagonistas & inibidores , Proteína HMGA2/antagonistas & inibidores , Suramina/química , Adipogenia/efeitos dos fármacos , Motivos de Aminoácidos/efeitos dos fármacos , Sequência de Bases/efeitos dos fármacos , Sítios de Ligação/efeitos dos fármacos , Carcinogênese/efeitos dos fármacos , DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteína HMGA1a/química , Proteína HMGA1a/genética , Proteína HMGA2/química , Proteína HMGA2/genética , Ensaios de Triagem em Larga Escala , Humanos , Suramina/isolamento & purificação , Suramina/farmacologia
7.
Cell Cycle ; 18(13): 1446-1457, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31116627

RESUMO

Glioblastoma (GBM) is a lethal, fast-growing brain cancer, affecting 2-3 per 100,000 adults per year. It arises from multipotent neural stem cells which have reduced their ability to divide asymmetrically and hence divide symmetrically, generating increasing number of cancer stem cells, fostering tumor growth. We have previously demonstrated that the architectural transcription factor HMGA1 is highly expressed in brain tumor stem cells (BTSCs) and that its silencing increases stem cell quiescence, reduces self-renewal and sphere-forming efficiency in serial passages, suggesting a shift from symmetric to asymmetric division. Since NUMB expression is fundamental for the fulfillment of asymmetric division in stem cells, and is lost or reduced in many tumors, including GBM, we have investigated the ability of HMGA1 to regulate NUMB expression. Here, we show that HMGA1 negatively regulates NUMB expression at transcriptional level, by binding its promoter and counteracting c/EBP-ß and at posttranscriptional level, by regulating the expression of MSI1 and of miR-146a. Finally, we report that HMGA1 knockdown-induced NUMB upregulation leads to the downregulation of the NOTCH1 pathway. Therefore, the data reported here indicate that HMGA1 negatively regulates NUMB expression in BTSCs, further supporting HMGA1 targeting as innovative and effective anti-cancer therapy.


Assuntos
Neoplasias Encefálicas/genética , Glioblastoma/genética , Proteína HMGA1a/genética , Proteínas de Membrana/genética , Células-Tronco Neoplásicas/patologia , Proteínas do Tecido Nervoso/genética , Processamento Pós-Transcricional do RNA/genética , Transcrição Gênica/genética , Encéfalo/patologia , Neoplasias Encefálicas/patologia , Divisão Celular/genética , Linhagem Celular , Linhagem Celular Tumoral , Regulação para Baixo/genética , Glioblastoma/patologia , Células HEK293 , Humanos , MicroRNAs/genética , Células-Tronco Multipotentes/patologia , Regiões Promotoras Genéticas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA