Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Hum Genomics ; 7: 19, 2013 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-24040966

RESUMO

BACKGROUND: The MECP2 gene codes for methyl CpG binding protein 2 which regulates activities of other genes in the early development of the brain. Mutations in this gene have been associated with Rett syndrome, a form of autism. The purpose of this study was to investigate the role of evolutionarily conserved cis-elements in regulating the post-transcriptional expression of the MECP2 gene and to explore their possible correlations with a mutation that is known to cause mental retardation. RESULTS: A bioinformatics approach was used to map evolutionarily conserved cis-regulatory elements in the transcribed regions of the human MECP2 gene and its mammalian orthologs. Cis-regulatory motifs including G-quadruplexes, microRNA target sites, and AU-rich elements have gained significant importance because of their role in key biological processes and as therapeutic targets. We discovered in the 5'-UTR (untranslated region) of MECP2 mRNA a highly conserved G-quadruplex which overlapped a known deletion in Rett syndrome patients with decreased levels of MeCP2 protein. We believe that this 5'-UTR G-quadruplex could be involved in regulating MECP2 translation. We mapped additional evolutionarily conserved G-quadruplexes, microRNA target sites, and AU-rich elements in the key sections of both untranslated regions. Our studies suggest the regulation of translation, mRNA turnover, and development-related alternative MECP2 polyadenylation, putatively involving interactions of conserved cis-regulatory elements with their respective trans factors and complex interactions among the trans factors themselves. We discovered highly conserved G-quadruplex motifs that were more prevalent near alternative splice sites as compared to the constitutive sites of the MECP2 gene. We also identified a pair of overlapping G-quadruplexes at an alternative 5' splice site that could potentially regulate alternative splicing in a negative as well as a positive way in the MECP2 pre-mRNAs. CONCLUSIONS: A Rett syndrome mutation with decreased protein expression was found to be associated with a conserved G-quadruplex. Our studies suggest that MECP2 post-transcriptional gene expression could be regulated by several evolutionarily conserved cis-elements like G-quadruplex motifs, microRNA target sites, and AU-rich elements. This phylogenetic analysis has provided some interesting and valuable insights into the regulation of the MECP2 gene involved in autism.


Assuntos
Transtorno Autístico/genética , Regulação da Expressão Gênica , Proteína 2 de Ligação a Metil-CpG/genética , Processamento de Proteína Pós-Traducional/genética , Regiões 5' não Traduzidas , Processamento Alternativo , Animais , Sequência de Bases , Mapeamento Cromossômico , Cães , Evolução Molecular , Quadruplex G , Deleção de Genes , Humanos , Proteína 2 de Ligação a Metil-CpG/metabolismo , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Dados de Sequência Molecular , Filogenia , Poliadenilação , Sítios de Splice de RNA , Ratos , Síndrome de Rett/genética
2.
Nucleic Acids Res ; 36(Database issue): D141-8, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18045785

RESUMO

G-quadruplex motifs in the RNA play significant roles in key cellular processes and human disease. While sequences capable of forming G-quadruplexes in the pre-mRNA are involved in regulation of polyadenylation and splicing events in mammalian transcripts, the G-quadruplex motifs in the UTRs may help regulate mRNA expression. GRSDB2 is a second-generation database containing information on the composition and distribution of putative Quadruplex-forming G-Rich Sequences (QGRS) mapped in approximately 29 000 eukaryotic pre-mRNA sequences, many of which are alternatively processed. The data stored in the GRSDB2 is based on computational analysis of NCBI Entrez Gene entries with the help of an improved version of the QGRS Mapper program. The database allows complex queries with a wide variety of parameters, including Gene Ontology terms. The data is displayed in a variety of formats with several additional computational capabilities. We have also developed a new database, GRS_UTRdb, containing information on the composition and distribution patterns of putative QGRS in the 5'- and 3'-UTRs of eukaryotic mRNA sequences. The goal of these experiments has been to build freely accessible resources for exploring the role of G-quadruplex structure in regulation of gene expression at post-transcriptional level. The databases can be accessed at the G-Quadruplex Resource Site at: http://bioinformatics.ramapo.edu/GQRS/.


Assuntos
Bases de Dados de Ácidos Nucleicos , Quadruplex G , Precursores de RNA/química , RNA Mensageiro/química , Regiões não Traduzidas/química , Processamento Alternativo , Animais , Humanos , Internet , Ratos , Interface Usuário-Computador
3.
Nucleic Acids Res ; 34(Web Server issue): W676-82, 2006 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-16845096

RESUMO

The quadruplex structures formed by guanine-rich nucleic acid sequences have received significant attention recently because of growing evidence for their role in important biological processes and as therapeutic targets. G-quadruplex DNA has been suggested to regulate DNA replication and may control cellular proliferation. Sequences capable of forming G-quadruplexes in the RNA have been shown to play significant roles in regulation of polyadenylation and splicing events in mammalian transcripts. Whether quadruplex structure directly plays a role in regulating RNA processing requires investigation. Computational approaches to study G-quadruplexes allow detailed analysis of mammalian genomes. There are no known easily accessible user-friendly tools that can compute G-quadruplexes in the nucleotide sequences. We have developed a web-based server, QGRS Mapper, that predicts quadruplex forming G-rich sequences (QGRS) in nucleotide sequences. It is a user-friendly application that provides many options for defining and studying G-quadruplexes. It performs analysis of the user provided genomic sequences, e.g. promoter and telomeric regions, as well as RNA sequences. It is also useful for predicting G-quadruplex structures in oligonucleotides. The program provides options to search and retrieve desired gene/nucleotide sequence entries from NCBI databases for mapping G-quadruplexes in the context of RNA processing sites. This feature is very useful for investigating the functional relevance of G-quadruplex structure, in particular its role in regulating the gene expression by alternative processing. In addition to providing data on composition and locations of QGRS relative to the processing sites in the pre-mRNA sequence, QGRS Mapper features interactive graphic representation of the data. The user can also use the graphics module to visualize QGRS distribution patterns among all the alternative RNA products of a gene simultaneously on a single screen. QGRS Mapper can be accessed at http://bioinformatics.ramapo.edu/QGRS/.


Assuntos
DNA/química , Guanina/química , Análise de Sequência de DNA/métodos , Análise de Sequência de RNA/métodos , Software , Gráficos por Computador , Quadruplex G , Internet , Oligonucleotídeos/química , RNA/química , Interface Usuário-Computador
4.
Nucleic Acids Res ; 34(Database issue): D119-24, 2006 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-16381828

RESUMO

Guanine-rich nucleic acids are known to form highly stable G-quadruplex structures, also known as G-quartets. Recently, there has been a tremendous amount of interest in studying G-quadruplexes owing to the realization of their biological importance. G-rich sequences (GRSs) capable of forming G-quadruplexes are found in the vicinity of polyadenylation regions and are involved in regulating 3' end processing of mammalian pre-mRNAs. G-rich motifs are also known to play an important role in alternative, tissue-specific splicing by interacting with hnRNP H protein subfamily. Whether quadruplex structure directly plays a role in regulating RNA processing events requires further investigation. To date there has not been a comprehensive effort to study G-quadruplexes near RNA processing sites. We have applied a computational approach to map putative Quadruplex forming GRSs within the transcribed regions of a large number of alternatively processed human and mouse gene sequences that were obtained as fully annotated entries from GenBank and RefSeq. We have used the computed data to build the GRSDB database that provides a unique avenue for studying G-quadruplexes in the context of RNA processing sites. GRSDB website offers visual comparison of G-quadruplex distribution patterns among all the alternative RNA products of a gene with the help of dynamic graphics. At present, GRSDB contains data from 1310 human and mouse genes, of which 1188 are alternatively processed. It has a total of 379,223 predicted G-quadruplexes, of which 54,252 are near RNA processing sites. GRSDB is a good resource for researchers interested in investigating the functional relevance of G-quadruplexes, especially in the context of alternative RNA processing. It can be accessed at http://bioinformatics.ramapo.edu/grsdb/.


Assuntos
Processamento Alternativo , Bases de Dados de Ácidos Nucleicos , Guanina/química , Precursores de RNA/química , RNA Mensageiro/química , Sequências Reguladoras de Ácido Ribonucleico , Animais , Sequência de Bases , Gráficos por Computador , Humanos , Internet , Camundongos , Processamento de Terminações 3' de RNA , Sinais de Poliadenilação na Ponta 3' do RNA , Sítios de Splice de RNA , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA