Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Exp Biol ; 226(2)2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36657384

RESUMO

We investigated how baboons transition from quadrupedal to bipedal walking without any significant interruption in their forward movement (i.e. transition 'on the fly'). Building on basic mechanical principles (momentum only changes when external forces/moments act on the body), insights into possible strategies for such a dynamical mode transition are provided and applied first to the recorded planar kinematics of an example walking sequence (including several continuous quadrupedal, transition and subsequent bipedal steps). Body dynamics are calculated from the kinematics. The strategy used in this worked example boils down to: crouch the hind parts and sprint them underneath the rising body centre of mass. Forward accelerations are not in play. Key characteristics of this transition strategy were extracted: progression speed, hip height, step duration (frequency), foot positioning at touchdown with respect to the hip and the body centre of mass (BCoM), and congruity between the moments of the ground reaction force about the BCoM and the rate of change of the total angular moment. Statistical analyses across the full sample (15 transitions of 10 individuals) confirm this strategy is always used and is shared across individuals. Finally, the costs (in J kg-1 m-1) linked to on the fly transitions were estimated. The costs are approximately double those of both the preceding quadrupedal and subsequent bipedal walking. Given the short duration of the transition as such (<1 s), it is argued that the energetic costs to change walking posture on the fly are negligible when considered in the context of the locomotor repertoire.


Assuntos
Primatas , Caminhada , Animais , Fenômenos Biomecânicos , Fenômenos Mecânicos , Postura , Locomoção , Marcha
2.
J Hum Evol ; 156: 103014, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34023575

RESUMO

Interspecies differences in locomotor efficiency have been extensively researched, but within-species variation in the metabolic cost of walking and its underlying causes have received much less attention. This is somewhat surprising given the importance of walking energetics to natural selection, and the fact that the mechanical efficiency of striding bipedalism in modern humans is thought to be related in some part to the unique morphology of the human foot. Previous studies of human running have linked specific anatomical traits in the foot to variations in locomotor energetics to provide insight into form-function relationships in human evolution. However, such studies are relatively rare, particularly for walking. In this study, relationships between a range of functional musculoskeletal traits in the human lower limb and the energetics of walking over compliant and noncompliant substrates are examined, with particular focus on the lower limb and foot. Twenty-nine young, healthy individuals walked across three surfaces-a noncompliant laboratory floor, and compliant 6 cm and 13 cm thick foams-at self-selected speeds while oxygen consumption was measured, from which the metabolic cost of transport was calculated. Lower limb lengths, calcaneus lengths, foot shape indices, and maximum isometric plantarflexion torques were also measured and subsequently tested for relationships with metabolic cost over these surfaces using linear regression. It was found that metabolic cost varied considerably between individuals within and across substrate types, but this variation was not statistically related to or explained by variations in musculoskeletal parameters considered to be adaptively important to efficient bipedal locomotion. This therefore provides no supportive evidence that variations in these gross anatomical parameters confer significant advantages to the efficiency of walking, and therefore suggest caution in the use of similar metrics to infer differences in walking energetics in closely related fossil species.


Assuntos
Metabolismo Energético , Pé/anatomia & histologia , Caminhada , Evolução Biológica , Fenômenos Biomecânicos , Marcha , Humanos , Locomoção , Corrida
3.
J Hum Evol ; 156: 102997, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33993031

RESUMO

Although many studies relating stature to foot length have been carried out, the relationship between foot size and body mass remains poorly understood. Here we investigate this relationship in 193 adult and 50 juvenile habitually unshod/minimally shod individuals from five different populations-Machiguenga, Daasanach, Pumé, Hadzabe, and Samoans-varying greatly in body size and shape. Body mass is highly correlated with foot size, and can be predicted from foot area (maximum length × breadth) in the combined sample with an average error of about 10%. However, comparisons among populations indicate that body shape, as represented by the body mass index (BMI), has a significant effect on foot size proportions, with higher BMI samples exhibiting relatively smaller feet. Thus, we also derive equations for estimating body mass from both foot size and BMI, with BMI in footprint samples taken as an average value for a taxon or population, estimated independently from skeletal remains. Techniques are also developed for estimating body mass in juveniles, who have relatively larger feet than adults, and for converting between foot and footprint size. Sample applications are given for five Pliocene through Holocene hominin footprint samples from Laetoli (Australopithecus afarensis), Ileret (probable Homo erectus), Happisburgh (possible Homo antecessor), Le Rozel (archaic Homo sapiens), and Barcin Höyük (H. sapiens). Body mass estimates for Homo footprint samples appear reasonable when compared to skeletal estimates for related samples. However, estimates for the Laetoli footprint sample using the new formulae appear to be too high when compared to skeletal estimates for A. afarensis. Based on the proportions of A.L. 288-1, this is apparently a result of relatively large feet in this taxon. A different method using a ratio between body mass and foot area in A.L. 288-1 provides estimates more concordant with skeletal estimates and should be used for A. afarensis.


Assuntos
Tamanho Corporal , Pé/anatomia & histologia , Fósseis , Hominidae/anatomia & histologia , Animais , Feminino , Masculino
4.
Proc Natl Acad Sci U S A ; 115(16): 4134-4139, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29610309

RESUMO

The evolutionary emergence of humans' remarkably economical walking gait remains a focus of research and debate, but experimentally validated approaches linking locomotor capability to postcranial anatomy are limited. In this study, we integrated 3D morphometrics of hominoid pelvic shape with experimental measurements of hip kinematics and kinetics during walking and climbing, hamstring activity, and passive range of hip extension in humans, apes, and other primates to assess arboreal-terrestrial trade-offs in ischium morphology among living taxa. We show that hamstring-powered hip extension during habitual walking and climbing in living apes and humans is strongly predicted, and likely constrained, by the relative length and orientation of the ischium. Ape pelves permit greater extensor moments at the hip, enhancing climbing capability, but limit their range of hip extension, resulting in a crouched gait. Human pelves reduce hip extensor moments but permit a greater degree of hip extension, which greatly improves walking economy (i.e., distance traveled/energy consumed). Applying these results to fossil pelves suggests that early hominins differed from both humans and extant apes in having an economical walking gait without sacrificing climbing capability. Ardipithecus was capable of nearly human-like hip extension during bipedal walking, but retained the capacity for powerful, ape-like hip extension during vertical climbing. Hip extension capability was essentially human-like in Australopithecus afarensis and Australopithecus africanus, suggesting an economical walking gait but reduced mechanical advantage for powered hip extension during climbing.


Assuntos
Marcha/fisiologia , Músculos Isquiossurais/fisiologia , Quadril/fisiologia , Hominidae/fisiologia , Adulto , Anatomia Comparada , Animais , Antropometria , Evolução Biológica , Fenômenos Biomecânicos , Fósseis , Hominidae/anatomia & histologia , Humanos , Hylobatidae/anatomia & histologia , Hylobatidae/fisiologia , Masculino , Pelve/fisiologia , Postura , Amplitude de Movimento Articular , Caminhada/fisiologia
5.
J Anat ; 237(5): 941-959, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32598483

RESUMO

Musculoskeletal modelling is an important platform on which to study the biomechanics of morphological structures in vertebrates and is widely used in clinical, zoological and palaeontological fields. The popularity of this approach stems from the potential to non-invasively quantify biologically important but difficult-to-measure functional parameters. However, while it is known that model predictions are highly sensitive to input values, it is standard practice to build models by combining musculoskeletal data from different sources resulting in 'generic' models for a given species. At present, there are little quantitative data on how merging disparate anatomical data in models impacts the accuracy of these functional predictions. This issue is addressed herein by quantifying the accuracy of both subject-specific human limb models containing individualised muscle force-generating properties and models built using generic properties from both elderly and young individuals, relative to experimental muscle torques obtained from an isokinetic dynamometer. The results show that subject-specific models predict isokinetic muscle torques to a greater degree of accuracy than generic models at the ankle (root-mean-squared error - 7.9% vs. 49.3% in elderly anatomy-based models), knee (13.2% vs. 57.3%) and hip (21.9% vs. 32.8%). These results have important implications for the choice of musculoskeletal properties in future modelling studies, and the relatively high level of accuracy achieved in the subject-specific models suggests that such models can potentially address questions about inter-subject variations of muscle functions. However, despite relatively high levels of overall accuracy, models built using averaged generic muscle architecture data from young, healthy individuals may lack the resolution and accuracy required to study such differences between individuals, at least in certain circumstances. The results do not wholly discourage the continued use of averaged generic data in musculoskeletal modelling studies but do emphasise the need for to maximise the accuracy of input values if studying intra-species form-function relationships in the musculoskeletal system.


Assuntos
Imagem de Tensor de Difusão , Músculo Esquelético/diagnóstico por imagem , Modelagem Computacional Específica para o Paciente , Adulto , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Músculo Esquelético/fisiologia , Torque
6.
Nature ; 571(7764): 176-177, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31285599

Assuntos
, Caminhada , Marcha
7.
Proc Biol Sci ; 285(1880)2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29899076

RESUMO

The well-developed Achilles tendon in humans is generally interpreted as an adaptation for mechanical energy storage and reuse during cyclic locomotion. All other extant great apes have a short tendon and long-fibred triceps surae, which is thought to be beneficial for locomotion in a complex arboreal habitat as this morphology enables a large range of motion. Surprisingly, highly arboreal gibbons show a more human-like triceps surae with a long Achilles tendon. Evidence for a spring-like function similar to humans is not conclusive. We revisit and integrate our anatomical and biomechanical data to calculate the energy that can be recovered from the recoiling Achilles tendon during ankle plantar flexion in bipedal gibbons. Only 7.5% of the required external positive work in a stride can come from tendon recoil, yet it is delivered at an instant when the whole-body energy level drops. Consequently, an additional similar amount of mechanical energy must simultaneously dissipate elsewhere in the system. Altogether, this challenges the concept of an energy-saving function in the gibbon's Achilles tendon. Cercopithecids, sister group of the apes, also have a human-like triceps surae. Therefore, a well-developed Achilles tendon, present in the last common 'Cercopithecoidea-Hominoidea' ancestor, seems plausible. If so, the gibbon's anatomy represents an evolutionary relict (no harm-no benefit), and the large Achilles tendon is not the premised key adaptation in humans (although the spring-like function may have further improved during evolution). Moreover, the triceps surae anatomy of extant non-human great apes must be a convergence, related to muscle control and range of motion. This perspective accords with the suggestions put forward in the literature that the last common hominoid ancestor was not necessarily great ape-like, but might have been more similar to the small-bodied catarrhines.


Assuntos
Tendão do Calcâneo/anatomia & histologia , Tendão do Calcâneo/fisiologia , Evolução Biológica , Hylobatidae/anatomia & histologia , Hylobatidae/fisiologia , Adaptação Biológica , Animais , Fenômenos Biomecânicos , Humanos , Locomoção
8.
J Anat ; 233(6): 843-853, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30294787

RESUMO

The inertial properties of body segments reflect performance and locomotor habits in primates. While Pan paniscus is generally described as more gracile, lighter in body mass, and as having relatively longer and heavier hindlimbs than Pan troglodytes, both species exhibit very similar patterns of (quadrupedal and bipedal) kinematics, but show slightly different locomotor repertoires. We used a geometric model to estimate the inertial properties for all body segments (i.e. head, trunk, upper and lower arms, hand, thigh, shank and foot) using external length and diameter measurements of 12 anaesthetized bonobos (eight adults and four immatures). We also calculated whole limb inertial properties. When we compared absolute and relative segment morphometric and inertial variables between bonobos and chimpanzees, we found that adult bonobos are significantly lighter than adult chimpanzees. The bonobo is also shorter in head length, upper and lower arm lengths, and foot length, and is generally lighter in most absolute segment mass values (except head and hand). In contrast, the bonobo has a longer trunk. When scaled relative to body mass, most differences disappear between the two species. Only the longer trunk and the shorter head of the bonobo remain apparent, as well as the lighter thigh compared with the chimpanzee. We found similar values of natural pendular periods of the limbs in both species, despite differences in absolute limb lengths, masses, mass centres (for the hindlimb) and moments of inertia. While our data contradict the commonly accepted view that bonobos have relatively longer and heavier hindlimbs than chimpanzees, they are consistent with the observed similarities in the quadrupedal and bipedal kinematics between these species. The morphological differences between both species are more subtle than those previously described from postcranial osteological materials.


Assuntos
Pan paniscus/anatomia & histologia , Pan troglodytes/anatomia & histologia , Animais , Fenômenos Biomecânicos , Feminino , Locomoção/fisiologia , Masculino , Pan paniscus/fisiologia , Pan troglodytes/fisiologia
9.
J Anat ; 230(6): 805-819, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28294323

RESUMO

The linear dimensions and inertial characteristics of the body are important in locomotion and they change considerably during the ontogeny of animals, including humans. This longitudinal and ontogenetic study has produced the largest dataset to date of segmental morphometrics in a Catarrhini species, the olive baboon. The objectives of the study were to quantify the changes in body linear and inertial dimensions and to explore their (theoretical) mechanical significance for locomotion. We took full-body measurements of captive individuals at regular intervals. Altogether, 14 females and 16 males were followed over a 7-year period, i.e. from infancy to adulthood. Our results show that individual patterns of growth are very consistent and follow the general growth pattern previously described in olive baboons. Furthermore, we obtained similar growth curve structures for segment lengths and masses, although the respective time scales were slightly different. The most significant changes in body morphometrics occurred during the first 2 years of life and concerned the distal parts of the body. Females and males were similar in size and shape at birth. The rate and duration of growth produced substantial size-related differences throughout ontogeny, while body shapes remained very similar between the sexes. We also observed significant age-related variations in limb composition, with a proximal shift of the centre of mass within the limbs, mainly due to changes in mass distribution and in the length of distal segments. Finally, we observed what we hypothesize to be 'early biomechanical optimization' of the limbs for quadrupedal walking. This is due to a high degree of convergence between the limbs' natural pendular periods in infants, which may facilitate the onset of quadrupedal walking. Furthermore, the mechanical significance of the morphological changes observed in growing baboons may be related to changing functional demands with the onset of autonomous (quadrupedal) locomotion. From a wider perspective, these data provide unique insights into questions surrounding both the processes of locomotor development in primates and how these processes might evolve.


Assuntos
Envelhecimento/fisiologia , Marcha/fisiologia , Papio anubis/crescimento & desenvolvimento , Caminhada/fisiologia , Animais , Fenômenos Biomecânicos/fisiologia , Feminino , Estudos Longitudinais , Masculino
11.
Am J Phys Anthropol ; 162(4): 782-793, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28101944

RESUMO

OBJECTIVES: This study investigates biomechanical implications of walking with indigenous "Kolhapuri" footwear compared to barefoot walking among a population of South Indians. MATERIALS AND METHODS: Ten healthy adults from South India walked barefoot and indigenously shod at voluntary speed on an artificial substrate. The experiment was repeated outside, on a natural substrate. Data were collected from (1) a heel-mounted 3D-accelerometer recording peak impact at heel contact, (2) an ankle-mounted 3D-goniometer (plantar/dorsiflexion and inversion/eversion), and (3) sEMG electrodes at the m. tibialis anterior and the m. gastrocnemius medialis. RESULTS: Data show that the effect of indigenous footwear on the measured variables, compared to barefoot walking, is relatively small and consistent between substrates (even though subjects walked faster on the natural substrate). Walking barefoot, compared to shod walking yields higher impact accelerations, but the differences are small and only significant for the artificial substrate. The main rotations of the ankle joint are mostly similar between conditions. Only the shod condition shows a faster ankle rotation over the rapid eversion motion on the natural substrate. Maximal dorsiflexion in late stance differs between the footwear conditions on an artificial substrate, with the shod condition involving a less dorsiflexed ankle, and the plantar flexion at toe-off is more extreme when shod. Overall the activity pattern of the external foot muscles is similar. DISCUSSION: The indigenous footwear studied (Kolhapuri) seems to alter foot biomechanics only in a subtle way. While offering some degree of protection, walking in this type of footwear resembles barefoot gait and this type of indigenous footwear might be considered "minimal".


Assuntos
Acelerometria/instrumentação , Fenômenos Biomecânicos/fisiologia , Pé/fisiologia , Sapatos/história , Caminhada , Acelerometria/métodos , Adulto , Povo Asiático/etnologia , História Antiga , Humanos , Índia , Músculo Esquelético/fisiologia , Caminhada/história , Caminhada/fisiologia
12.
Am J Primatol ; 78(11): 1165-1177, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27309794

RESUMO

Although much is known about the terrestrial locomotion of great apes, their arboreal locomotion has been studied less extensively. This study investigates arboreal locomotion in bonobos (Pan paniscus), focusing on the gait characteristics and spatio-temporal variables associated with locomotion on a pole. These features are compared across different substrate inclinations (0°, 30°, 45°, 60°, and 90°), and horizontal quadrupedal walking is compared between an arboreal and a terrestrial substrate. Our results show greater variation in footfall patterns with increasing incline, resulting in more lateral gait sequences. During climbing on arboreal inclines, smaller steps and strides but higher stride frequencies and duty factors are found compared to horizontal arboreal walking. This may facilitate better balance control and dynamic stability on the arboreal substrate. We found no gradual change in spatio-temporal variables with increasing incline; instead, the results for all inclines were clustered together. Bonobos take larger strides at lower stride frequencies and lower duty factors on a horizontal arboreal substrate than on a flat terrestrial substrate. We suggest that these changes are the result of the better grip of the grasping feet on an arboreal substrate. Speed modulation of the spatio-temporal variables is similar across substrate inclinations and between substrate types, suggesting a comparable underlying motor control. Finally, we contrast these variables of arboreal inclined climbing with those of terrestrial bipedal locomotion, and briefly discuss the results with respect to the origin of habitual bipedalism. Am. J. Primatol. 78:1165-1177, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Marcha , Locomoção , Pan paniscus , Animais , Fenômenos Biomecânicos ,
13.
Am J Phys Anthropol ; 156(1): 1-10, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25303732

RESUMO

Humans stand alone from other primates in that we propel our bodies forward on a relatively stiff and arched foot and do so by employing an anatomical arrangement of bones and ligaments in the foot that can operate like a "windlass." This is a significant evolutionary innovation, but it is currently unknown when during hominin evolution this mechanism developed and within what genera or species it originated. The presence of recently discovered fossils along with novel research in the past two decades have improved our understanding of foot mechanics in humans and other apes, making it possible to consider this question more fully. Here we review the main elements thought to be involved in the production of an effective, modern human-like windlass mechanism. These elements are the triceps surae, plantar aponeurosis, medial longitudinal arch, and metatarsophalangeal joints. We discuss what is presently known about the evolution of these features and the challenges associated with identifying each of these specific components and/or their function in living and extinct primates for the purpose of predicting the presence of the windlass mechanism in our ancestors. In some cases we recommend alternative pathways for inferring foot mechanics and for testing the hypothesis that the windlass mechanism evolved to increase the speed and energetic efficiency of bipedal gait in hominins.


Assuntos
Evolução Biológica , Pé/anatomia & histologia , Pé/fisiologia , Hominidae/anatomia & histologia , Hominidae/fisiologia , Anatomia Comparada , Animais , Antropologia Física , Fósseis , Humanos
14.
Proc Biol Sci ; 280(1769): 20131818, 2013 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-23966646

RESUMO

Fossil evidence for longitudinal arches in the foot is frequently used to constrain the origins of terrestrial bipedality in human ancestors. This approach rests on the prevailing concept that human feet are unique in functioning with a relatively stiff lateral mid-foot, lacking the significant flexion and high plantar pressures present in non-human apes. This paradigm has stood for more than 70 years but has yet to be tested objectively with quantitative data. Herein, we show that plantar pressure records with elevated lateral mid-foot pressures occur frequently in healthy, habitually shod humans, with magnitudes in some individuals approaching absolute maxima across the foot. Furthermore, the same astonishing pressure range is present in bonobos and the orangutan (the most arboreal great ape), yielding overlap with human pressures. Thus, while the mean tendency of habitual mechanics of the mid-foot in healthy humans is indeed consistent with the traditional concept of the lateral mid-foot as a relatively rigid or stabilized structure, it is clear that lateral arch stabilization in humans is not obligate and is often transient. These findings suggest a level of detachment between foot stiffness during gait and osteological structure, hence fossilized bone morphology by itself may only provide a crude indication of mid-foot function in extinct hominins. Evidence for thick plantar tissues in Ardipithecus ramidus suggests that a human-like combination of active and passive modulation of foot compliance by soft tissues extends back into an arboreal context, supporting an arboreal origin of hominin bipedalism in compressive orthogrady. We propose that the musculoskeletal conformation of the modern human mid-foot evolved under selection for a functionally tuneable, rather than obligatory stiff structure.


Assuntos
Evolução Biológica , Pé/fisiologia , Locomoção , Pan paniscus/fisiologia , Pongo/fisiologia , Adulto , Idoso , Animais , Complacência (Medida de Distensibilidade) , Feminino , Pé/anatomia & histologia , Marcha , Humanos , Masculino , Pessoa de Meia-Idade , Pan paniscus/anatomia & histologia , Pongo/anatomia & histologia , Pressão , Adulto Jovem
15.
J Anat ; 222(6): 598-607, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23600634

RESUMO

The modern human foot is a complex biomechanical structure that must act both as a shock absorber and as a propulsive strut during the stance phase of gait. Understanding the ways in which foot segments interact can illuminate the mechanics of foot function in healthy and pathological humans. It has been proposed that increased values of medial longitudinal arch deformation can limit metatarsophalangeal joint excursion via tension in the plantar aponeurosis. However, this model has not been tested directly in a dynamic setting. In this study, we tested the hypothesis that during the stance phase, subtalar pronation (stretching of the plantar aponeurosis and subsequent lowering of the medial longitudinal arch) will negatively affect the amount of first metatarsophalangeal joint excursion occurring at push-off. Vertical descent of the navicular (a proxy for subtalar pronation) and first metatarsophalangeal joint dorsal excursion were measured during steady locomotion over a flat substrate on a novel sample consisting of asymptomatic adult males and females, many of whom are habitually unshod. Least-squares regression analyses indicated that, contrary to the hypothesis, navicular drop did not explain a significant amount of variation in first metatarsophalangeal joint dorsal excursion. These results suggest that, in an asymptomatic subject, the plantar aponeurosis and the associated foot bones can function effectively within the normal range of subtalar pronation that takes place during walking gait. From a clinical standpoint, this study highlights the need for investigating the in vivo kinematic relationship between subtalar pronation and metatarsophalangeal joint dorsiflexion in symptomatic populations, and also the need to explore other factors that may affect the kinematics of asymptomatic feet.


Assuntos
Articulação Metatarsofalângica/fisiologia , Ossos do Tarso/fisiologia , Adulto , Idoso , Feminino , Pé/anatomia & histologia , Pé/fisiologia , Marcha/fisiologia , Humanos , Índia , Masculino , Pessoa de Meia-Idade , Pronação/fisiologia , Análise de Regressão , Ossos do Tarso/anatomia & histologia , Caminhada/fisiologia , Adulto Jovem
16.
J Anat ; 220(1): 13-28, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22034995

RESUMO

The maximum capability of a muscle can be estimated from simple measurements of muscle architecture such as muscle belly mass, fascicle length and physiological cross-sectional area. While the hindlimb anatomy of the non-human apes has been studied in some detail, a comparative study of the forelimb architecture across a number of species has never been undertaken. Here we present data from chimpanzees, bonobos, gorillas and an orangutan to ascertain if, and where, there are functional differences relating to their different locomotor repertoires and habitat usage. We employed a combination of analyses including allometric scaling and ancovas to explore the data, as the sample size was relatively small and heterogeneous (specimens of different sizes, ages and sex). Overall, subject to possible unidentified, confounding factors such as age effects, it appears that the non-human great apes in this sample (the largest assembled to date) do not vary greatly across different muscle architecture parameters, even though they perform different locomotor behaviours at different frequencies. Therefore, it currently appears that the time spent performing a particular behaviour does not necessarily impose a dominating selective influence on the soft-tissue portion of the musculoskeletal system; rather, the overall consistency of muscle architectural properties both between and within the Asian and African apes strengthens the case for the hypothesis of a possible ancient shared evolutionary origin for orthogrady under compressive and/or suspensory loading in the great apes.


Assuntos
Adaptação Fisiológica , Membro Anterior/anatomia & histologia , Hominidae/anatomia & histologia , Locomoção/fisiologia , Músculo Esquelético/anatomia & histologia , Análise de Variância , Animais , Feminino , Membro Anterior/fisiologia , Gorilla gorilla/anatomia & histologia , Músculo Esquelético/fisiologia , Pan paniscus/anatomia & histologia , Pan troglodytes/anatomia & histologia , Pongo pygmaeus/anatomia & histologia
17.
Arthritis Res Ther ; 24(1): 128, 2022 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-35637500

RESUMO

BACKGROUND: Knee joint injuries, common in athletes, have a high risk of developing post-traumatic osteoarthritis (PTOA). Ligaments, matrix-rich connective tissues, play important mechanical functions stabilising the knee joint, and yet their role post-trauma is not understood. Recent studies have shown that ligament extracellular matrix structure is compromised in the early stages of spontaneous osteoarthritis (OA) and PTOA, but it remains unclear how ligament matrix pathology affects ligament mechanical function. In this study, we aim to investigate both structural and mechanical changes in the anterior cruciate ligament (ACL) in a mouse model of knee trauma. METHODS: Knee joints were analysed following non-invasive mechanical loading in male C57BL/6 J mice (10-week-old). Knee joints were analysed for joint space mineralisation to evaluate OA progression, and the ACLs were assessed with histology and mechanical testing. RESULTS: Joints with PTOA had a 33-46% increase in joint space mineralisation, indicating OA progression. Post-trauma ACLs exhibited extracellular matrix modifications, including COL2 and proteoglycan deposition. Additional changes included cells expressing chondrogenic markers (SOX9 and RUNX2) expanding from the ACL tibial enthesis to the mid-substance. Viscoelastic and mechanical changes in the ACLs from post-trauma knee joints included a 20-21% decrease in tangent modulus at 2 MPa of stress, a decrease in strain rate sensitivity at higher strain rates and an increase in relaxation during stress-relaxation, but no changes to hysteresis and ultimate load to failure were observed. CONCLUSIONS: These results demonstrate that ACL pathology and viscoelastic function are compromised in the post-trauma knee joint and reveal an important role of viscoelastic mechanical properties for ligament and potentially knee joint health.


Assuntos
Lesões do Ligamento Cruzado Anterior , Traumatismos do Joelho , Osteoartrite , Animais , Ligamento Cruzado Anterior/patologia , Lesões do Ligamento Cruzado Anterior/complicações , Biomarcadores , Humanos , Traumatismos do Joelho/patologia , Articulação do Joelho/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Osteoartrite/etiologia , Osteoartrite/patologia
18.
J R Soc Interface ; 19(196): 20220483, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36448287

RESUMO

Walking on compliant substrates requires more energy than walking on hard substrates but the biomechanical factors that contribute to this increase are debated. Previous studies suggest various causative mechanical factors, including disruption to pendular energy recovery, increased muscle work, decreased muscle efficiency and increased gait variability. We test each of these hypotheses simultaneously by collecting a large kinematic and kinetic dataset of human walking on foams of differing thickness. This allowed us to systematically characterize changes in gait with substrate compliance, and, by combining data with mechanical substrate testing, drive the very first subject-specific computer simulations of human locomotion on compliant substrates to estimate the internal kinetic demands on the musculoskeletal system. Negative changes to pendular energy exchange or ankle mechanics are not supported by our analyses. Instead we find that the mechanistic causes of increased energetic costs on compliant substrates are more complex than captured by any single previous hypothesis. We present a model in which elevated activity and mechanical work by muscles crossing the hip and knee are required to support the changes in joint (greater excursion and maximum flexion) and spatio-temporal kinematics (longer stride lengths, stride times and stance times, and duty factors) on compliant substrates.


Assuntos
Marcha , Caminhada , Humanos , Cinética , Locomoção , Articulação do Tornozelo
19.
J Exp Biol ; 214(Pt 7): 1123-30, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21389197

RESUMO

The ostrich is highly specialized in terrestrial locomotion and is the only extant bird that is both didactyl and exhibits a permanently elevated metatarsophalangeal joint. This extreme degree of digitigrady provides an excellent opportunity for the study of phalangeal adaptation towards fast, sustained bipedal locomotion. Data were gathered in a semi-natural setting with hand-raised, cooperative specimens. Dynamic pressure distribution, centre of pressure (CoP) trajectory and the positional inter-relationship of the toes during stance phase were investigated using pedobarography. Walking and running trials shared a J-shaped CoP trajectory with greater localization of CoP origin as speed increased. Slight variations of 4th toe position in walking affect CoP origin and modulation of 4th toe pressure on the substrate allows correction of balance, primarily at the beginning of stance phase at lower speeds. Load distribution patterns differed significantly between slow and fast trials. In walking, the 3rd and particularly the 4th toe exhibited notable variation in load distribution with minor claw participation only at push-off. Running trials yielded a distinctly triangular load distribution pattern defined by the 4th toe tip, the proximal part of the 3rd toe and the claw tip, with the sharp point of the claw providing an essential traction element at push-off. Consistency of CoP trajectory and load distribution at higher speeds arises from dynamic stability effects and may also reflect stringent limitations to degrees of freedom in hindlimb joint articulation that contribute to locomotor efficiency. This novel research could aid in the reconstruction of theropod locomotor modes and offers a systemic approach for future avian pedobarographic investigations.


Assuntos
Articulação Metatarsofalângica/fisiologia , Corrida , Struthioniformes/fisiologia , Dedos do Pé/fisiologia , Gravação de Videodisco/métodos , Caminhada , Animais , Comportamento Animal , Fenômenos Biomecânicos , Feminino , Pressão , Suporte de Carga
20.
J Exp Biol ; 214(Pt 4): 687-96, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21270319

RESUMO

The storage and recovery of elastic strain energy in the musculoskeletal systems of locomoting animals has been extensively studied, yet the external environment represents a second potentially useful energy store that has often been neglected. Recent studies have highlighted the ability of orangutans to usefully recover energy from swaying trees to minimise the cost of gap crossing. Although mechanically similar mechanisms have been hypothesised for wild leaping primates, to date no such energy recovery mechanisms have been demonstrated biomechanically in leapers. We used a setup consisting of a forceplate and two high-speed video cameras to conduct a biomechanical analysis of captive gibbons leaping from stiff and compliant poles. We found that the gibbons minimised pole deflection by using different leaping strategies. Two leap types were used: slower orthograde leaps and more rapid pronograde leaps. The slower leaps used a wider hip joint excursion to negate the downward movement of the pole, using more impulse to power the leap, but with no increase in work done on the centre of mass. Greater hip excursion also minimised the effective leap distance during orthograde leaps. The more rapid leaps conversely applied peak force earlier in stance where the pole was effectively stiffer, minimising deflection and potential energy loss. Neither leap type appeared to usefully recover energy from the pole to increase leap performance, but the gibbons demonstrated an ability to best adapt their leap biomechanics to counter the negative effects of the compliant pole.


Assuntos
Meio Ambiente , Hylobates/fisiologia , Locomoção/fisiologia , Animais , Fenômenos Biomecânicos , Feminino , Masculino , Fenômenos Mecânicos , Estatísticas não Paramétricas , Gravação em Vídeo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA