Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(30): 20653-20662, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39040033

RESUMO

From medicine to sport, selective androgen receptor modulators (SARMs) have represented promising applications. The ability of SARMs to selectively interact with the androgen receptor (AR) indicates that this kind of molecule can interfere with numerous physiological and pathological processes controlled by the AR regulatory mechanism. However, critical concerns in relation to safety and potential side effects of SARMs remain under discussion and investigation. SARMs, being hydrophobic/organic compounds, can be subjected to hydrophobic interactions. In this perspective, we hypothesize that SARMs interact with lipid membranes, producing significant physical and chemical changes that could be associated with several effects that SARMs represent in biological systems. In this context, the effect of SARMs on lipid membranes mediated by non-specific interactions is little explored. Here, we report significant information related to the changes that ostarine, ligandrol, andarine, and cardarine produce in the thermodynamic properties of a lipid biomembrane model. Physical changes and chemical interactions of the systems were investigated by differential scanning calorimetry (DSC), dynamic light scattering (DLS), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), and theoretical calculations implementing density functional theory (DFT). We demonstrate that ostarine, ligandrol, andarine, and cardarine can strongly interact with a lipid biomembrane model composed of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), and accordingly, these molecules can be incorporated into the polar/hydrophobic regions of the lipid bilayer. By employing theoretical calculations, we gained insights into the possible electrostatic interactions between SARMs and phospholipid molecules, enhancing our understanding of the driving forces behind the interactions of SARMs with lipid membranes. Overall, this investigation provides relevant knowledge related to the biophysical-chemical effects that SARMs produce in biomembrane models and could be of practical reference for promising applications of SARMs in medicine and sport.


Assuntos
Bicamadas Lipídicas , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Termodinâmica , Receptores Androgênicos/metabolismo , Receptores Androgênicos/química , Varredura Diferencial de Calorimetria , Teoria da Densidade Funcional , Espectroscopia de Infravermelho com Transformada de Fourier
2.
J Mater Chem B ; 12(24): 5823-5837, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38757473

RESUMO

Liposome-based technologies derived from lipids and polymers (e.g., PEGylated liposomes) have been recognized because of their applications in nanomedicine. However, since such systems represent myriad challenges and may promote immune responses, investigation of new biomaterials is mandatory. Here, we report on a biophysical investigation of liposomes decorated with bioconjugated copolymers in the presence (or absence) of amantadine (an antiviral medication). First, copolymers of poly(N,N-dimethylacrylamide-co-fluoresceinacrylate-co-acrylic acid-N-succinimide ester)-block-poly(N-isopropylacrylamide) (PDMA-b-PNIPAM) containing a fluorescence label were biofunctionalized with short peptides that resemble the sequence of the loops 220 and 130 of the binding receptor of the hemagglutinin (HA) protein of the influenza A virus. Then, the bioconjugated copolymers were self-assembled along with liposomes composed of 1,2 dimyristoyl-sn-glycero-3-phosphocholine, sphingomyelin, and cholesterol (MSC). These biohybrid systems, with and without amantadine, were systematically characterized using differential scanning calorimetry (DSC), dynamic light scattering (DLS), and cryogenic transmission electron microscopy (cryoTEM). Finally, the systems were tested in an in vitro study to evaluate cytotoxicity and direct immunofluorescence in Madin Darbin Canine Kidney (MDCK) cells. The biohybrid systems displayed long-term stability, thermo-responsiveness, hydrophilic-hydrophobic features, and fluorescence properties and were presumable endowed with cell targeting properties intrinsically integrated into the amino acid sequences of the utilized peptides, which indeed turn them into promising nanodevices for biomedical applications.


Assuntos
Amantadina , Lipossomos , Lipossomos/química , Amantadina/química , Polímeros/química , Animais , Antivirais/química , Antivirais/farmacologia , Células Madin Darby de Rim Canino , Cães
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA