Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 194
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
3.
Am J Physiol Renal Physiol ; 320(5): F947-F962, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33719571

RESUMO

Renal endothelial cells (ECs) play crucial roles in vasorelaxation, ultrafiltration, and selective transport of electrolytes and water, but also in leakage of the glomerular filtration barrier and inflammatory processes like complement activation and leukocyte recruitment. In addition, they are target cells for both cellular and antibody-mediated rejection in the transplanted kidney. To study the molecular and cellular processes underlying EC behavior in renal disease, well-characterized primary renal ECs are indispensible. In this report, we describe a straightforward procedure to isolate ECs from the perfusion fluid of human donor kidneys by a combination of negative selection of monocytes/macrophages, positive selection by CD31 Dynabeads, and propagation in endothelium-specific culture medium. Thus, we isolated and propagated renal ECs from 102 donor kidneys, representative of all blood groups and major human leukocyte antigen (HLA) class I and II antigens. The obtained ECs were positive for CD31 and von Willebrand factor, expressed other endothelial markers such as CD34, VEGF receptor-2, TIE2, and plasmalemmal vesicle associated protein-1 to a variable extent, and were negative for the monocyte marker CD14 and lymphatic endothelial marker podoplanin. HLA class II was either constitutively expressed or could be induced by interferon-γ. Furthermore, as a proof of principle, we showed the diagnostic value of this renal endothelial biobank in renal endothelium-specific cross-matching tests for HLA antibodies.NEW & NOTEWORTHY We describe a new and widely accessible approach to obtain human primary renal endothelial cells in a standardized fashion, by isolating from the perfusate of machine-perfused donor kidneys. Characterization of the cells showed a mixed population originating from different compartments of the kidney. As a proof of principle, we demonstrated a possible diagnostic application in an endothelium-specific cross-match. Next to transplantation, we foresee further applications in the field renal endothelial research.


Assuntos
Separação Celular/métodos , Células Endoteliais/fisiologia , Rim/irrigação sanguínea , Rim/citologia , Técnicas de Cultura de Órgãos/métodos , Células Cultivadas , Antígenos de Histocompatibilidade Classe I , Humanos , Doadores de Tecidos
4.
Am J Transplant ; 21(3): 993-1002, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32743873

RESUMO

In brain-dead donors immunological activation occurs, which deteriorates donor lung quality. Whether the complement system is activated and which pathways are herein involved, remain unknown. We aimed to investigate whether brain death (BD)-induced lung injury is complement dependent and dissected the contribution of the complement activation pathways. BD was induced and sustained for 3 hours in wild-type (WT) and complement deficient mice. C3-/- mice represented total complement deficiency, C4-/- mice represented deficiency of the classical and lectin pathway, and factor properdin (P)-/- mice represented alternative pathway deficiency. Systemic and local complement levels, histological lung injury, and pulmonary inflammation were assessed. Systemic and local complement levels were reduced in C3-/- mice. In addition, histological lung injury and inflammation were attenuated, as corroborated by influx of neutrophils and gene expressions of interleukin (IL)-6, IL-8-like KC, TNF-α, E-selectin, and MCP-1. In C4-/- mice, complement was reduced on both systemic and local levels and histological lung injury and inflammatory status were ameliorated. In P-/- mice, histological lung injury was attenuated, though systemic and local complement levels, IL-6 and KC gene expressions, and neutrophil influx were not affected. We demonstrated that BD-induced lung injury is complement dependent, with a primary role for the classical/lectin activation pathway.


Assuntos
Morte Encefálica , Lesão Pulmonar , Animais , Ativação do Complemento , Inflamação , Lectinas , Lesão Pulmonar/etiologia , Camundongos
5.
Am J Kidney Dis ; 76(5): 669-678, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32439421

RESUMO

RATIONALE & OBJECTIVE: Glomerular C4d (C4dG) as an indicator of the lectin pathway of complement activation in immunoglobulin A nephropathy (IgAN) has been associated with more severe kidney damage. Recent studies have suggested that vascular lesions in IgAN biopsy specimens with complement deposition are also associated with disease progression. We aimed to study the clinical significance of arteriolar C4d (C4dA) in IgAN kidney biopsy tissue. STUDY DESIGN: Retrospective cohort study. SETTING & PARTICIPANTS: Kidney biopsy specimens from 126 adults with IgAN diagnosed by Oxford classification criteria were stained using immunohistochemistry and classified according to C4dG and C4dA deposition. Additionally, vascular lesions including acute and chronic microangiopathy, arteriolar hyalinosis, and arterial intima fibrosis were characterized. PREDICTOR: C4dA. OUTCOME: Progressive kidney disease, defined as a decline in estimated glomerular filtration rate by≥50% or occurrence of kidney failure. ANALYTICAL APPROACH: The association of C4dA and C4dG with baseline clinical and histologic characteristics, as well as progressive kidney disease, were assessed with survival analysis using multivariable Cox regression analysis. RESULTS: C4dA was identified in 21 (17%) patients and was associated with mean arterial pressure, arterial intima fibrosis, and chronic microangiopathy. C4dA was also significantly associated with C4dG and both were associated with progressive kidney disease. In regression analysis, C4dA remained significantly associated with progressive kidney disease after adjusting for other significant predictors, including baseline estimated glomerular filtration rate, mean arterial pressure, and the presence of crescents. LIMITATIONS: Findings based on the retrospective evaluation of a single center's experience, limited number of events, a small number of patients with a broad range of kidney disease stages, and use of immunohistochemistry rather than immunofluorescence to detect C4d. CONCLUSIONS: C4dA is a potential biomarker for disease progression in IgAN. It should be further investigated in larger cohorts to determine the value of C4dA in improving prediction of IgAN disease progression.


Assuntos
Complemento C4b/metabolismo , Taxa de Filtração Glomerular/fisiologia , Glomerulonefrite por IGA/patologia , Glomérulos Renais/patologia , Adulto , Biomarcadores/metabolismo , Biópsia , Ativação do Complemento , Progressão da Doença , Feminino , Seguimentos , Glomerulonefrite por IGA/metabolismo , Glomerulonefrite por IGA/fisiopatologia , Humanos , Glomérulos Renais/metabolismo , Masculino , Prognóstico , Estudos Retrospectivos
6.
Ophthalmology ; 127(12): 1693-1709, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32553749

RESUMO

PURPOSE: The current study aimed to identify metabolites associated with age-related macular degeneration (AMD) by performing the largest metabolome association analysis in AMD to date, as well as aiming to determine the effect of AMD-associated genetic variants on metabolite levels and investigate associations between the identified metabolites and activity of the complement system, one of the main AMD-associated disease pathways. DESIGN: Case-control association analysis of metabolomics data. PARTICIPANTS: Five European cohorts consisting of 2267 AMD patients and 4266 control participants. METHODS: Metabolomics was performed using a high-throughput proton nuclear magnetic resonance metabolomics platform, which allows quantification of 146 metabolite measurements and 79 derivative values. Metabolome-AMD associations were studied using univariate logistic regression analyses. The effect of 52 AMD-associated genetic variants on the identified metabolites was investigated using linear regression. In addition, associations between the identified metabolites and activity of the complement pathway (defined by the C3d-to-C3 ratio) were investigated using linear regression. MAIN OUTCOME MEASURES: Metabolites associated with AMD. RESULTS: We identified 60 metabolites that were associated significantly with AMD, including increased levels of large and extra-large high-density lipoprotein (HDL) subclasses and decreased levels of very low-density lipoprotein (VLDL), amino acids, and citrate. Of 52 AMD-associated genetic variants, 7 variants were associated significantly with 34 of the identified metabolites. The strongest associations were identified for genetic variants located in or near genes involved in lipid metabolism (ABCA1, CETP, APOE, and LIPC) with metabolites belonging to the large and extra-large HDL subclasses. Also, 57 of 60 metabolites were associated significantly with complement activation levels, independent of AMD status. Increased large and extra-large HDL levels and decreased VLDL and amino acid levels were associated with increased complement activation. CONCLUSIONS: Lipoprotein levels were associated with AMD-associated genetic variants, whereas decreased essential amino acids may point to nutritional deficiencies in AMD. We observed strong associations between the vast majority of the AMD-associated metabolites and systemic complement activation levels, independent of AMD status. This may indicate biological interactions between the main AMD disease pathways and suggests that multiple pathways may need to be targeted simultaneously for successful treatment of AMD.


Assuntos
Ativação do Complemento/fisiologia , Genômica , Degeneração Macular/genética , Metabolômica , Transportador 1 de Cassete de Ligação de ATP/genética , Idoso , Idoso de 80 Anos ou mais , Apolipoproteínas E/genética , Estudos de Casos e Controles , Proteínas de Transferência de Ésteres de Colesterol/genética , Feminino , Humanos , Lipase/genética , Masculino , Metaboloma/genética , Pessoa de Meia-Idade , Espectroscopia de Prótons por Ressonância Magnética
7.
Clin Immunol ; 198: 102-105, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30472267

RESUMO

Owing to an increasing shortage of donor organs, the majority of patients with end-stage kidney disease remains reliant on extracorporeal hemodialysis (HD) in order to counter the lifelong complications of a failing kidney. While HD remains a life-saving option for these patients, mounting evidence suggests that it also fuels a vicious cycle of thromboinflammation that can increase the risk of cardiovascular disease. During HD, blood-borne innate immune systems become inappropriately activated on the biomaterial surface, instigating proinflammatory reactions that can alter endothelial and vascular homeostasis. Complement activation, early during the HD process, has been shown to fuel a multitude of detrimental thromboinflammatory reactions that collectively contribute to patient morbidity. Here we discuss emerging aspects of complement's involvement in HD-induced inflammation and put forth the concept that targeted intervention at the level of C3 might constitute a promising therapeutic approach in HD patients.


Assuntos
Complemento C3/antagonistas & inibidores , Inativadores do Complemento/uso terapêutico , Inflamação/tratamento farmacológico , Diálise Renal/efeitos adversos , Humanos
8.
Kidney Int ; 94(1): 16-18, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29933843

RESUMO

Glomerular complement deposition is common in IgA nephropathy, and recent genome-wide association studies point to a role of complement factor H and complement factor H-related proteins in disease susceptibility. A number of recent studies have now documented elevated levels of some factor H-related proteins in IgA nephropathy, which might contribute to enhanced complement activation.


Assuntos
Glomerulonefrite por IGA , Ativação do Complemento , Fator H do Complemento/genética , Proteínas do Sistema Complemento/genética , Estudo de Associação Genômica Ampla , Humanos
9.
Kidney Int ; 94(6): 1141-1150, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30322716

RESUMO

Properdin is the only known positive regulator of complement activation by stabilizing the alternative pathway convertase through C3 binding, thus prolonging its half-life. Recent in vitro studies suggest that properdin may act as a specific pattern recognition molecule. To better understand the role of properdin in vivo, we used an experimental model of acute anti-glomerular basement membrane disease with wild-type, C3- and properdin knockout mice. The model exhibited severe proteinuria, acute neutrophil infiltration and activation, classical and alternative pathway activation, and progressive glomerular deposition of properdin, C3 and C9. Although the acute renal injury was likely due to acute neutrophil activation, we found properdin deposition in C3-knockout mice that was not associated with IgG. Thus, properdin may deposit in injured tissues in vivo independent of its main ligand C3.


Assuntos
Doença Antimembrana Basal Glomerular/imunologia , Ativação do Complemento/imunologia , Complemento C3/imunologia , Properdina/imunologia , Animais , Doença Antimembrana Basal Glomerular/patologia , Complemento C3/genética , Complemento C3/metabolismo , Modelos Animais de Doenças , Feminino , Membrana Basal Glomerular/citologia , Membrana Basal Glomerular/imunologia , Membrana Basal Glomerular/patologia , Humanos , Imunoglobulina G/administração & dosagem , Imunoglobulina G/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/imunologia , Properdina/genética , Properdina/metabolismo , Ligação Proteica/imunologia
10.
Eur J Immunol ; 47(3): 470-480, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28105653

RESUMO

Dendritic cells (DCs) and complement are both key members of the innate and adaptive immune response. Recent experimental mouse models have shown that production of alternative pathway (AP) components by DCs strongly affects their ability to activate and regulate T-cell responses. In this study we investigated the production and regulation of properdin (fP) and factor H (fH) both integral regulators of the AP, by DCs and tolerogenic DCs (tolDCs). Both fP and fH were produced by DCs, with significantly higher levels of both AP components produced by tolDCs. Upon activation with IFN-γ both cells increased fH production, while simultaneously decreasing production of fP. IL-27, a member of the IL-12 family, increased fH, but production of fP remained unaffected. The functional capacity of fP and fH produced by DCs and tolDCs was confirmed by their ability to bind C3b. Inhibition of fH production by DCs resulted in a greater ability to induce allogenic CD4+ T-cell proliferation. In contrast, inhibition of fP production led to a significantly reduced allostimulatory capacity. In summary, this study shows that production of fP and fH by DCs, differentially regulates their immunogenicity, and that the local cytokine environment can profoundly affect the production of fP and fH.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Fator H do Complemento/metabolismo , Via Alternativa do Complemento , Células Dendríticas/fisiologia , Properdina/metabolismo , Proliferação de Células , Células Cultivadas , Complemento C3b/metabolismo , Fator H do Complemento/genética , Humanos , Tolerância Imunológica , Interferon gama/metabolismo , Interleucina-27/metabolismo , Isoantígenos/imunologia , Ativação Linfocitária , Properdina/genética , RNA Interferente Pequeno/genética
11.
Ophthalmology ; 125(7): 1064-1074, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29398083

RESUMO

PURPOSE: To identify genetic variants associated with complement activation, which may help to select age-related macular degeneration (AMD) patients for complement-inhibiting therapies. DESIGN: Genome-wide association study (GWAS) followed by replication and meta-analysis. PARTICIPANTS: AMD patients and controls (n = 2245). METHODS: A GWAS on serum C3d-to-C3 ratio was performed in 1548 AMD patients and controls. For replication and meta-analysis, 697 additional individuals were genotyped. A model for complement activation including genetic and non-genetic factors was built, and the variance explained was estimated. Haplotype analysis was performed for 8 SNPs across the CFH/CFHR locus. Association with AMD was performed for the variants and haplotypes found to influence complement activation. MAIN OUTCOME MEASURES: Normalized C3d/C3 ratio as a measure of systemic complement activation. RESULTS: Complement activation was associated independently with rs3753396 located in CFH (Pdiscovery = 1.09 × 10-15; Pmeta = 3.66 × 10-21; ß = 0.141; standard error [SE] = 0.015) and rs6685931 located in CFHR4 (Pdiscovery = 8.18 × 10-7; Pmeta = 6.32 × 10-8; ß = 0.054; SE = 0.010). A model including age, AMD disease status, body mass index, triglycerides, rs3753396, rs6685931, and previously identified SNPs explained 18.7% of the variability in complement activation. Haplotype analysis revealed 3 haplotypes (H1-2 and H6 containing rs6685931 and H3 containing rs3753396) associated with complement activation. Haplotypes H3 and H6 conferred stronger effects on complement activation compared with the single variants (P = 2.53 × 10-14; ß = 0.183; SE = 0.024; and P = 4.28 × 10-4; ß = 0.144; SE = 0.041; respectively). Association analyses with AMD revealed that SNP rs6685931 and haplotype H1-2 containing rs6685931 were associated with a risk for AMD development, whereas SNP rs3753396 and haplotypes H3 and H6 were not. CONCLUSIONS: The SNP rs3753396 in CFH and SNP rs6685931 in CFHR4 are associated with systemic complement activation levels. The SNP rs6685931 in CFHR4 and its linked haplotype H1-2 also conferred a risk for AMD development, and therefore could be used to identify AMD patients who would benefit most from complement-inhibiting therapies.


Assuntos
Apolipoproteínas/genética , Ativação do Complemento/fisiologia , Degeneração Macular/sangue , Degeneração Macular/genética , Polimorfismo de Nucleotídeo Único , Idoso , Idoso de 80 Anos ou mais , HDL-Colesterol/sangue , Complemento C3/metabolismo , Complemento C3d/metabolismo , Fator H do Complemento/genética , Feminino , Estudo de Associação Genômica Ampla , Técnicas de Genotipagem , Haplótipos , Humanos , Masculino , Pessoa de Meia-Idade , Triglicerídeos/sangue
12.
FASEB J ; 31(7): 3193-3204, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28396344

RESUMO

The complement system, and specifically C5a, is involved in renal ischemia-reperfusion (IR) injury. The 2 receptors for complement anaphylatoxin C5a (C5aR1 and C5aR2) are expressed on leukocytes as well as on renal epithelium. Extensive evidence shows that C5aR1 inhibition protects kidneys from IR injury; however, the role of C5aR2 in IR injury is less clear as initial studies proposed the hypothesis that C5aR2 functions as a decoy receptor. By Using wild-type, C5aR1-/-, and C5aR2-/- mice in a model of renal IR injury, we found that a deficiency of either of these receptors protected mice from renal IR injury. Surprisingly, C5aR2-/- mice were most protected and had lower creatinine levels and reduced acute tubular necrosis. Next, an in vivo migration study demonstrated that leukocyte chemotaxis was unaffected in C5aR2-/- mice, whereas neutrophil activation was reduced by C5aR2 deficiency. To further investigate the contribution of renal cell-expressed C5aR2 vs leukocyte-expressed C5aR2 to renal IR injury, bone marrow chimeras were created. Our data show that both renal cell-expressed C5aR2 and leukocyte-expressed C5aR2 mediate IR-induced renal dysfunction. These studies reveal the importance of C5aR2 in renal IR injury. They further show that C5aR2 is a functional receptor, rather than a decoy receptor, and may provide a new target for intervention.-Poppelaars, F., van Werkhoven, M. B., Kotimaa, J., Veldhuis, Z. J., Ausema, A., Broeren, S. G. M., Damman, J., Hempel, J. C., Leuvenink, H. G. D., Daha, M. R., van Son, W. J., van Kooten, C., van Os, R. P., Hillebrands, J.-L., Seelen, M. A. Critical role for complement receptor C5aR2 in the pathogenesis of renal ischemia-reperfusion injury.


Assuntos
Nefropatias/etiologia , Receptor da Anafilatoxina C5a/metabolismo , Traumatismo por Reperfusão/metabolismo , Animais , Movimento Celular/fisiologia , Regulação da Expressão Gênica , Leucócitos/fisiologia , Camundongos , Camundongos Knockout , Ativação de Neutrófilo , Neutrófilos/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor da Anafilatoxina C5a/genética
13.
Nephrol Dial Transplant ; 33(12): 2073-2079, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29701808

RESUMO

The complement system is composed of a network of at least 40 proteins, which significantly contributes to health and disease. The lectin pathway (LP) is one of three pathways that can activate the complement system. Next to protection of the host against pathogens, the LP has been shown to play a crucial role in multiple renal diseases as well as during renal replacement therapy. Therefore, several complement-targeted drugs are currently being explored in clinical trials. Among these complement inhibitors, specific LP inhibitors are also being tested in renal abnormalities such as in immunoglobulin A nephropathy and lupus nephritis. Using various in vitro models, Yaseen et al. (Lectin pathway effector enzyme mannan-binding lectin-associated serine protease-2 can activate native complement component 3 (C3) in absence of C4 and/or C2. FASEB J 2017; 31: 2210-2219) showed that Mannan-associated serine protease2 can directly activate C3 thereby bypassing C2 and C4 in the activation of the LP. These new findings broaden our understanding of the mechanisms of complement activation and could potentially impact our strategies to inhibit the LP in renal diseases. In support of these findings, we present data of human renal biopsies, demonstrating the occurrence of the LP bypass mechanism in vivo. In conclusion, this review provides a detailed overview of the LP and clarifies the recently described bypass mechanism and its relevance. Finally, we speculate on the role of the C4 bypass mechanism in other renal diseases.


Assuntos
Nefropatias/fisiopatologia , Lectinas/metabolismo , Animais , Ativação do Complemento , Humanos , Nefropatias/imunologia , Transdução de Sinais
14.
J Biol Chem ; 291(10): 4974-81, 2016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26728463

RESUMO

Complement factor H (FH) inhibits complement activation and interacts with glomerular endothelium via its complement control protein domains 19 and 20, which also recognize heparan sulfate (HS). Abnormalities in FH are associated with the renal diseases atypical hemolytic uremic syndrome and dense deposit disease and the ocular disease age-related macular degeneration. Although FH systemically controls complement activation, clinical phenotypes selectively manifest in kidneys and eyes, suggesting the presence of tissue-specific determinants of disease development. Recent results imply the importance of tissue-specifically expressed, sulfated glycosaminoglycans (GAGs), like HS, in determining FH binding to and activity on host tissues. Therefore, we investigated which GAGs mediate human FH and recombinant human FH complement control proteins domains 19 and 20 (FH19-20) binding to mouse glomerular endothelial cells (mGEnCs) in ELISA. Furthermore, we evaluated the functional defects of FH19-20 mutants during complement activation by measuring C3b deposition on mGEnCs using flow cytometry. FH and FH19-20 bound dose-dependently to mGEnCs and TNF-α treatment increased binding of both proteins, whereas heparinase digestion and competition with heparin/HS inhibited binding. Furthermore, 2-O-, and 6-O-, but not N-desulfation of heparin, significantly increased the inhibitory effect on FH19-20 binding to mGEnCs. Compared with wild type FH19-20, atypical hemolytic uremic syndrome-associated mutants were less able to compete with FH in normal human serum during complement activation on mGEnCs, confirming their potential glomerular pathogenicity. In conclusion, our study shows that FH and FH19-20 binding to glomerular endothelial cells is differentially mediated by HS but not other GAGs. Furthermore, we describe a novel, patient serum-independent competition assay for pathogenicity screening of FH19-20 mutants.


Assuntos
Fator H do Complemento/metabolismo , Células Endoteliais/metabolismo , Mutação , Animais , Linhagem Celular , Ativação do Complemento , Fator H do Complemento/química , Fator H do Complemento/genética , Fator H do Complemento/imunologia , Células Endoteliais/efeitos dos fármacos , Glicosaminoglicanos/metabolismo , Heparina/farmacologia , Humanos , Glomérulos Renais/citologia , Camundongos , Ligação Proteica , Estrutura Terciária de Proteína , Fator de Necrose Tumoral alfa/farmacologia
15.
Am J Nephrol ; 45(1): 49-59, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27889746

RESUMO

BACKGROUND: Intravenous (IV) iron preparations are widely used in the treatment of anemia in patients undergoing hemodialysis (HD). All IV iron preparations carry a risk of causing hypersensitivity reactions. However, the pathophysiological mechanism is poorly understood. We hypothesize that a relevant number of these reactions are mediated by complement activation, resulting in a pseudo-anaphylactic clinical picture known as complement activation-related pseudo allergy (CARPA). METHODS: First, the in-vitro complement-activating capacity was determined for 5 commonly used IV iron preparations using functional complement assays for the 3 pathways. Additionally, the preparations were tested in an ex-vivo model using the whole blood of healthy volunteers and HD patients. Lastly, in-vivo complement activation was tested for one preparation in HD patients. RESULTS: In the in-vitro assays, iron dextran, and ferric carboxymaltose caused complement activation, which was only possible under alternative pathway conditions. Iron sucrose may interact with complement proteins, but did not activate complement in-vitro. In the ex-vivo assay, iron dextran significantly induced complement activation in the blood of healthy volunteers and HD patients. Furthermore, in the ex-vivo assay, ferric carboxymaltose and iron sucrose only caused significant complement activation in the blood of HD patients. No in-vitro or ex-vivo complement activation was found for ferumoxytol and iron isomaltoside. IV iron therapy with ferric carboxymaltose in HD patients did not lead to significant in-vivo complement activation. CONCLUSION: This study provides evidence that iron dextran and ferric carboxymaltose have complement-activating capacities in-vitro, and hypersensitivity reactions to these drugs could be CARPA-mediated.


Assuntos
Anemia Ferropriva/tratamento farmacológico , Ativação do Complemento/efeitos dos fármacos , Hematínicos/farmacologia , Compostos de Ferro/farmacologia , Falência Renal Crônica/terapia , Administração Intravenosa , Anemia Ferropriva/complicações , Complemento C1q/efeitos dos fármacos , Complemento C1q/metabolismo , Complemento C3d/efeitos dos fármacos , Complemento C3d/metabolismo , Complexo de Ataque à Membrana do Sistema Complemento/efeitos dos fármacos , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Dissacarídeos/farmacologia , Dissacarídeos/uso terapêutico , Compostos Férricos/farmacologia , Compostos Férricos/uso terapêutico , Óxido de Ferro Sacarado , Óxido Ferroso-Férrico/farmacologia , Óxido Ferroso-Férrico/uso terapêutico , Ácido Glucárico/farmacologia , Ácido Glucárico/uso terapêutico , Hematínicos/uso terapêutico , Humanos , Técnicas In Vitro , Compostos de Ferro/uso terapêutico , Complexo Ferro-Dextran/farmacologia , Complexo Ferro-Dextran/uso terapêutico , Falência Renal Crônica/complicações , Maltose/análogos & derivados , Maltose/farmacologia , Maltose/uso terapêutico , Lectina de Ligação a Manose/efeitos dos fármacos , Lectina de Ligação a Manose/metabolismo , Properdina/efeitos dos fármacos , Properdina/metabolismo , Diálise Renal
16.
Nephrol Dial Transplant ; 32(4): 611-619, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28407128

RESUMO

Recently, interesting work was published by Farrar et al. [1] showing the interaction of fucosylated glycoproteins on stressed tubular epithelial cells with collectin-11 leading to complement activation via the lectin route of complement. This elegant work stimulated us to evaluate the dark side (bittersweet taste) of tubulo-interstitial glycans in kidney tissue damage. As will be discussed, glycans not only initiate tubular complement activation but also orchestrate tubulo-interstitial leucocyte recruitment and growth factor responses. In this review we restrict ourselves to tubulo-interstitial damage mainly by proteinuria, ischaemia-reperfusion injury and transplantation, and we discuss the involvement of endothelial and tubular glycans in atypical and Escherichia coli-mediated haemolytic uraemic syndrome. As will be seen, fucosylated, mannosylated, galactosylated and sialylated oligosaccharide structures along with glycosaminoglycans comprise the most important glycans related to kidney injury pathways. Up to now, therapeutic interventions in these glycan-mediated injury pathways are underexplored and warrant further research.


Assuntos
Túbulos Renais/efeitos dos fármacos , Nefrite Intersticial/etiologia , Polissacarídeos/efeitos adversos , Animais , Humanos , Túbulos Renais/patologia , Nefrite Intersticial/patologia
17.
Am J Physiol Renal Physiol ; 310(11): F1308-16, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-26984957

RESUMO

Previous studies have shown that complement activation on renal tubular cells is involved in the induction of interstitial fibrosis and cellular injury. Evidence suggests that the tubular cell damage is initiated by the alternative pathway (AP) of complement with properdin having an instrumental role. Properdin is a positive regulator of the AP, which can bind necrotic cells as well as viable proximal tubular epithelial cells (PTECs), inducing complement activation. Various studies have indicated that in the circulation there is an unidentified inhibitor of properdin. We investigated the ability of C-reactive protein (CRP), both in its monomeric (mCRP) and pentameric (pCRP) form, to inhibit AP activation and injury in vitro on renal tubular cells by fluorescent microscopy, ELISA, and flow cytometry. We demonstrated that preincubation of properdin with normal human serum inhibits properdin binding to viable PTECs. We identified mCRP as a factor able to bind to properdin in solution, thereby inhibiting its binding to PTECs. In contrast, pCRP exhibited no such binding and inhibitory effect. Furthermore, mCRP was able to inhibit properdin-directed C3 and C5b-9 deposition on viable PTECs. The inhibitory ability of mCRP was not unique for viable cells but also demonstrated for binding to necrotic Jurkat cells, a target for properdin binding and complement activation. In summary, mCRP is an inhibitor of properdin in both binding to necrotic cells and viable renal cells, regulating complement activation on the cell surface. We propose that mCRP limits amplification of tissue injury by controlling properdin-directed complement activation by damaged tissue and cells.


Assuntos
Proteína C-Reativa/metabolismo , Ativação do Complemento/efeitos dos fármacos , Complemento C3/metabolismo , Complemento C5/metabolismo , Rim/metabolismo , Properdina/farmacologia , Linhagem Celular , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Rim/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos
18.
Eur J Immunol ; 45(3): 915-21, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25446578

RESUMO

In addition to its effector functions, complement is an important regulator of adaptive immune responses. Murine studies suggest that complement modulates helper T-cell differentiation, and Th1 responses in particular are impaired in the absence of functional complement. Here, we have studied humoral responses to toxoid vaccines in eight patients with C3 deficiency, representing more than 25% of all the known patients worldwide. Serum cytokine levels were also studied. The patients developed normal Ig responses to tetanus and diphtheria toxoids, but IgE levels were low. The pattern of antigen-specific IgG subclasses was abnormal, with increased Th1-related IgG3 responses, low IgG2, and almost completely undetectable IgG4. The patients also had increased amounts of Th1-related cytokines IL-12p70 and IL-21, and these showed a positive correlation with IgG3 levels. Our results confirm that complement modulates Th differentiation, but reveal a more nuanced outcome than previously reported. Since IgG4 has been linked to tolerogenic responses, the data also suggest that in the absence of functional complement at least some aspects of systemic tolerance are impaired.


Assuntos
Diferenciação Celular/imunologia , Complemento C3/deficiência , Tolerância Imunológica , Imunidade Humoral/imunologia , Síndromes de Imunodeficiência/imunologia , Células Th1/imunologia , Criança , Pré-Escolar , Complemento C3/imunologia , Feminino , Doenças da Deficiência Hereditária de Complemento , Humanos , Imunidade Humoral/efeitos dos fármacos , Imunoglobulina E/sangue , Imunoglobulina E/imunologia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Síndromes de Imunodeficiência/sangue , Síndromes de Imunodeficiência/patologia , Interleucina-12/sangue , Interleucina-12/imunologia , Interleucinas/sangue , Interleucinas/imunologia , Masculino , Toxoide Tetânico/administração & dosagem , Células Th1/metabolismo , Células Th1/patologia , Adulto Jovem
19.
J Transl Med ; 14(1): 236, 2016 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-27495980

RESUMO

BACKGROUND: Hemodialysis patients have higher rates of cardiovascular morbidity and mortality compared to the general population. Mannose-binding lectin (MBL) plays an important role in the development of cardiovascular disease. In addition, hemodialysis alters MBL concentration and functional activity. The present study determines the predictive value of MBL levels for future cardiac events (C-event), cardiovascular events (CV-event) and all-cause mortality in HD patients. METHODS: We conducted a prospective study of 107 patients on maintenance hemodialysis. Plasma MBL, properdin, C3d and sC5b-9 was measured before and after one dialysis session. The association with future C-events, CV-events, and all-cause mortality was evaluated using Cox regression models. RESULTS: During median follow-up of 27 months, 36 participants developed 21 C-events and 36 CV-events, whereas 37 patients died. The incidence of C-events and CV-events was significantly higher in patients with low MBL levels (<319 ng/mL, lower quartile). In fully adjusted models, low MBL level was independently associated with increased CV-events (hazard ratio 3.98; 95 % CI 1.88-8.24; P < 0.001) and C-events (hazard ratio 3.96; 95 % CI 1.49-10.54; P = 0.006). No association was found between low MBL levels and all-cause mortality. Furthermore, MBL substantially improved risk prediction for CV-events beyond currently used clinical markers. CONCLUSIONS: Low MBL levels are associated with a higher risk for future C-events and CV-events. Therefore, MBL levels may help to identify hemodialysis patients who are at risk to develop cardiovascular disease.


Assuntos
Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/etiologia , Lectina de Ligação a Manose/sangue , Diálise Renal/efeitos adversos , Doenças Cardiovasculares/mortalidade , Causas de Morte , Complemento C3d/metabolismo , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Feminino , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Properdina/metabolismo , Fatores de Risco
20.
J Immunol ; 192(3): 1154-61, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24395916

RESUMO

C1q is the initiator of the classical complement pathway and, as such, is essential for efficient opsonization and clearance of pathogens, altered self-structures, and apoptotic cells. The ceramide transporter protein (CERT) and its longer splicing isoform CERTL are known to interact with extracellular matrix components, such as type IV collagen, and with the innate immune protein serum amyloid P. In this article, we report a novel function of CERT in the innate immune response. Both CERT isoforms, when immobilized, were found to bind the globular head region of C1q and to initiate the classical complement pathway, leading to activation of C4 and C3, as well as generation of the membrane attack complex C5b-9. In addition, C1q was shown to bind to endogenous CERTL on the surface of apoptotic cells. These results demonstrate the role of CERTs in innate immunity, especially in the clearance of apoptotic cells.


Assuntos
Complemento C1q/metabolismo , Via Clássica do Complemento , Proteínas Serina-Treonina Quinases/fisiologia , Anticorpos Monoclonais/imunologia , Apoptose/imunologia , Sítios de Ligação , Complemento C1q/imunologia , Via Alternativa do Complemento/efeitos dos fármacos , Via Clássica do Complemento/efeitos dos fármacos , Humanos , Imunidade Inata , Células Jurkat , Ligação Proteica , Mapeamento de Interação de Proteínas , Isoformas de Proteínas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/isolamento & purificação , Proteínas Serina-Treonina Quinases/farmacologia , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/farmacologia , Componente Amiloide P Sérico/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA