Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1421(2): 234-48, 1999 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-10518694

RESUMO

The carboxypeptidase activity occurring in hog intestinal mucosa is apparently due to two distinct enzymes which may be responsible for the release of basic COOH-terminal amino acids from short peptides. The plasma membrane-bound carboxypeptidase activity which occurs at neutral optimum pH levels was found to be enhanced by CoCl(2) and inhibited by guanidinoethylmercaptosuccinic acid, o-phenanthroline, ethylenediamine tetraacetic acid and cadmium acetate; whereas the soluble carboxypeptidase activity which occurs at an optimum pH level of 5.0 was not activated by CoCl(2) and only slightly inhibited by o-phenanthroline, ethylenediamine tetraacetic acid, NiCl(2) and CdCl(2). The latter activity was presumably due to lysosomal cathepsin B, which is known to be present in the soluble fraction of hog intestinal mucosa. Although the membrane-bound enzyme was evenly distributed along the small intestine, it was not anchored in the phospholipidic bilayer via a glycosyl-phosphatidylinositol moiety, as carboxypeptidase M from human placenta is. The enzyme was not solubilized by phosphatidylinositol-specific phospholipase C, but was solubilized to practically the same extent by several detergents. The purified trypsin-solubilized form is a glycoprotein with a molecular mass of 200 kDa, as determined by performing SDS-PAGE and gel filtration, which differs considerably from the molecular mass of human placental carboxypeptidase M (62 kDa). It was found to cleave lysyl bonds more rapidly than arginyl bonds, which is not so in the case of carboxypeptidase M, and immunoblotting analysis provided further evidence that hog intestinal and human placental membrane-bound carboxypeptidases do not bear much resemblance to each other. Since the latter enzyme has been called carboxypeptidase M, it is suggested that the former might be carboxypeptidase D, the recently described new member of the carboxypeptide B-type family.


Assuntos
Carboxipeptidases/metabolismo , Mucosa Intestinal/enzimologia , Aminoácidos/análise , Animais , Carboxipeptidases/antagonistas & inibidores , Carboxipeptidases/isolamento & purificação , Membrana Celular/enzimologia , Detergentes , Endopeptidases/metabolismo , Ativação Enzimática , Mucosa Gástrica/enzimologia , Concentração de Íons de Hidrogênio , Membranas Intracelulares/enzimologia , Solubilidade , Frações Subcelulares/enzimologia , Suínos , Tripsina , Fosfolipases Tipo C/metabolismo
2.
Biochimie ; 79(5): 265-73, 1997 May.
Artigo em Inglês | MEDLINE | ID: mdl-9258435

RESUMO

The soluble acylase I (N-acylamino acid amidohydrolase, EC 3.5.1.14) from hog intestinal mucosa was 11,000-fold purified for the first time using a new four-step procedure involving an immunoaffinity chromatography. The resulting protein, which had an isoelectric point of 5.2 and a M(r) of 90,000 was composed of two apparently identical N-acylated polypeptide chains. Its amino acid composition was comparable to that of hog kidney acylase I. The enzyme had a pH optimum at 8.0 and required Zn2+ or Co2+. The optimal temperature for the acylase reaction was 40 degrees C and the activation energy of thermodenaturation was estimated at 260 kJ mol-1. The enzyme was strongly inhibited when preincubated with chelating agents, by diethyl pyrocarbonate under histidine-modifying conditions as well as by sulfhydryl compounds. The reaction of the purified enzyme with the synthetic substrate furylacryloyl-L-methionine was partly characterized as follows: Km = 0.22 +/- 0.03 mM, kcat = 128.0 +/- 17.8 s-1 and kcat/Km = 5.8 +/- 1.6 x 10(5) M-1 s-1. The L-stereoisomer of methionine competitively inhibited the enzyme reaction with a Ki of 3.4 +/- 0.2 mM. It is suggested that acylase I might not only be involved in the catabolism of intracellular N-acylated protein but also be responsible for the biological utilization of N-acylated food proteins.


Assuntos
Amidoidrolases , Mucosa Intestinal/enzimologia , Amidoidrolases/antagonistas & inibidores , Amidoidrolases/química , Amidoidrolases/isolamento & purificação , Amidoidrolases/metabolismo , Animais , Citosol/enzimologia , Estabilidade Enzimática , Feminino , Ponto Isoelétrico , Cinética , Coelhos , Frações Subcelulares , Especificidade por Substrato , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA