Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Entropy (Basel) ; 25(2)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36832620

RESUMO

The development of reinforced polymer composite materials has had a significant influence on the challenging problem of shielding against high-energy photons, particularly X-rays and γ-rays in industrial and healthcare facilities. Heavy materials' shielding characteristics hold a lot of potential for bolstering concrete chunks. The mass attenuation coefficient is the main physical factor that is utilized to measure the narrow beam γ-ray attenuation of various combinations of magnetite and mineral powders with concrete. Data-driven machine learning approaches can be investigated to assess the gamma-ray shielding behavior of composites as an alternative to theoretical calculations, which are often time- and resource-intensive during workbench testing. We developed a dataset using magnetite and seventeen mineral powder combinations at different densities and water/cement ratios, exposed to photon energy ranging from 1 to 1006 kiloelectronvolt (KeV). The National Institute of Standards and Technology (NIST) photon cross-section database and software methodology (XCOM) was used to compute the concrete's γ-ray shielding characteristics (LAC). The XCOM-calculated LACs and seventeen mineral powders were exploited using a range of machine learning (ML) regressors. The goal was to investigate whether the available dataset and XCOM-simulated LAC can be replicated using ML techniques in a data-driven approach. The minimum absolute error (MAE), root mean square error (RMSE), and R2score were employed to assess the performance of our proposed ML models, specifically a support vector machine (SVM), 1d-convolutional neural network (CNN), multi-Layer perceptrons (MLP), linear regressor, decision tree, hierarchical extreme machine learning (HELM), extreme learning machine (ELM), and random forest networks. Comparative results showed that our proposed HELM architecture outperformed state-of-the-art SVM, decision tree, polynomial regressor, random forest, MLP, CNN, and conventional ELM models. Stepwise regression and correlation analysis were further used to evaluate the forecasting capability of ML techniques compared to the benchmark XCOM approach. According to the statistical analysis, the HELM model showed strong consistency between XCOM and predicted LAC values. Additionally, the HELM model performed better in terms of accuracy than the other models used in this study, yielding the highest R2score and the lowest MAE and RMSE.

2.
J Med Internet Res ; 23(4): e26627, 2021 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-33724919

RESUMO

BACKGROUND: Global efforts toward the development and deployment of a vaccine for COVID-19 are rapidly advancing. To achieve herd immunity, widespread administration of vaccines is required, which necessitates significant cooperation from the general public. As such, it is crucial that governments and public health agencies understand public sentiments toward vaccines, which can help guide educational campaigns and other targeted policy interventions. OBJECTIVE: The aim of this study was to develop and apply an artificial intelligence-based approach to analyze public sentiments on social media in the United Kingdom and the United States toward COVID-19 vaccines to better understand the public attitude and concerns regarding COVID-19 vaccines. METHODS: Over 300,000 social media posts related to COVID-19 vaccines were extracted, including 23,571 Facebook posts from the United Kingdom and 144,864 from the United States, along with 40,268 tweets from the United Kingdom and 98,385 from the United States from March 1 to November 22, 2020. We used natural language processing and deep learning-based techniques to predict average sentiments, sentiment trends, and topics of discussion. These factors were analyzed longitudinally and geospatially, and manual reading of randomly selected posts on points of interest helped identify underlying themes and validated insights from the analysis. RESULTS: Overall averaged positive, negative, and neutral sentiments were at 58%, 22%, and 17% in the United Kingdom, compared to 56%, 24%, and 18% in the United States, respectively. Public optimism over vaccine development, effectiveness, and trials as well as concerns over their safety, economic viability, and corporation control were identified. We compared our findings to those of nationwide surveys in both countries and found them to correlate broadly. CONCLUSIONS: Artificial intelligence-enabled social media analysis should be considered for adoption by institutions and governments alongside surveys and other conventional methods of assessing public attitude. Such analyses could enable real-time assessment, at scale, of public confidence and trust in COVID-19 vaccines, help address the concerns of vaccine sceptics, and help develop more effective policies and communication strategies to maximize uptake.


Assuntos
Inteligência Artificial , Vacinas contra COVID-19/administração & dosagem , Opinião Pública , Mídias Sociais/estatística & dados numéricos , Vacinação/psicologia , COVID-19/epidemiologia , COVID-19/prevenção & controle , COVID-19/psicologia , Humanos , Processamento de Linguagem Natural , Aceitação pelo Paciente de Cuidados de Saúde , SARS-CoV-2/isolamento & purificação , Reino Unido/epidemiologia , Estados Unidos/epidemiologia
3.
Sensors (Basel) ; 21(11)2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34199814

RESUMO

The health status of an elderly person can be identified by examining the additive effects of aging along with disease linked to it and can lead to 'unstable incapacity'. This health status is determined by the apparent decline of independence in activities of daily living (ADLs). Detecting ADLs provides possibilities of improving the home life of elderly people as it can be applied to fall detection systems. This paper presents fall detection in elderly people based on radar image classification by examining their daily routine activities, using radar data that were previously collected for 99 volunteers. Machine learning techniques are used classify six human activities, namely walking, sitting, standing, picking up objects, drinking water and fall events. Different machine learning algorithms, such as random forest, K-nearest neighbours, support vector machine, long short-term memory, bi-directional long short-term memory and convolutional neural networks, were used for data classification. To obtain optimum results, we applied data processing techniques, such as principal component analysis and data augmentation, to the available radar images. The aim of this paper is to improve upon the results achieved using a publicly available dataset to further improve upon research of fall detection systems. It was found out that the best results were obtained using the CNN algorithm with principal component analysis and data augmentation together to obtain a result of 95.30% accuracy. The results also demonstrated that principal component analysis was most beneficial when the training data were expanded by augmentation of the available data. The results of our proposed approach, in comparison to the state of the art, have shown the highest accuracy.


Assuntos
Atividades Cotidianas , Radar , Idoso , Algoritmos , Humanos , Aprendizado de Máquina , Redes Neurais de Computação , Caminhada
4.
Sensors (Basel) ; 22(1)2021 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-35009675

RESUMO

Until now, clinicians are not able to evaluate the Psychogenic Non-Epileptic Seizures (PNES) from the rest-electroencephalography (EEG) readout. No EEG marker can help differentiate PNES cases from healthy subjects. In this paper, we have investigated the power spectrum density (PSD), in resting-state EEGs, to evaluate the abnormalities in PNES affected brains. Additionally, we have used functional connectivity tools, such as phase lag index (PLI), and graph-derived metrics to better observe the integration of distributed information of regular and synchronized multi-scale communication within and across inter-regional brain areas. We proved the utility of our method after enrolling a cohort study of 20 age- and gender-matched PNES and 19 healthy control (HC) subjects. In this work, three classification models, namely support vector machine (SVM), linear discriminant analysis (LDA), and Multilayer perceptron (MLP), have been employed to model the relationship between the functional connectivity features (rest-HC versus rest-PNES). The best performance for the discrimination of participants was obtained using the MLP classifier, reporting a precision of 85.73%, a recall of 86.57%, an F1-score of 78.98%, and, finally, an accuracy of 91.02%. In conclusion, our results hypothesized two main aspects. The first is an intrinsic organization of functional brain networks that reflects a dysfunctional level of integration across brain regions, which can provide new insights into the pathophysiological mechanisms of PNES. The second is that functional connectivity features and MLP could be a promising method to classify rest-EEG data of PNES form healthy controls subjects.


Assuntos
Eletroencefalografia , Convulsões , Estudos de Coortes , Humanos , Aprendizado de Máquina , Descanso
5.
Entropy (Basel) ; 23(5)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34066133

RESUMO

Sentiment analysis aims to automatically classify the subject's sentiment (e.g., positive, negative, or neutral) towards a particular aspect such as a topic, product, movie, news, etc. Deep learning has recently emerged as a powerful machine learning technique to tackle the growing demand for accurate sentiment analysis. However, the majority of research efforts are devoted to English-language only, while information of great importance is also available in other languages. This paper presents a novel, context-aware, deep-learning-driven, Persian sentiment analysis approach. Specifically, the proposed deep-learning-driven automated feature-engineering approach classifies Persian movie reviews as having positive or negative sentiments. Two deep learning algorithms, convolutional neural networks (CNN) and long-short-term memory (LSTM), are applied and compared with our previously proposed manual-feature-engineering-driven, SVM-based approach. Simulation results demonstrate that LSTM obtained a better performance as compared to multilayer perceptron (MLP), autoencoder, support vector machine (SVM), logistic regression and CNN algorithms.

6.
Entropy (Basel) ; 23(11)2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34828099

RESUMO

Global navigation satellite systems have been used for reliable location-based services in outdoor environments. However, satellite-based systems are not suitable for indoor positioning due to low signal power inside buildings and low accuracy of 5 m. Future smart homes demand low-cost, high-accuracy and low-power indoor positioning systems that can provide accuracy of less than 5 m and enable battery operation for mobility and long-term use. We propose and implement an intelligent, highly accurate and low-power indoor positioning system for smart homes leveraging Gaussian Process Regression (GPR) model using information-theoretic gain based on reduction in differential entropy. The system is based on Time Difference of Arrival (TDOA) and uses ultra-low-power radio transceivers working at 434 MHz. The system has been deployed and tested using indoor measurements for two-dimensional (2D) positioning. In addition, the proposed system provides dual functionality with the same wireless links used for receiving telemetry data, with configurable data rates of up to 600 Kbauds. The implemented system integrates the time difference pulses obtained from the differential circuitry to determine the radio frequency (RF) transmitter node positions. The implemented system provides a high positioning accuracy of 0.68 m and 1.08 m for outdoor and indoor localization, respectively, when using GPR machine learning models, and provides telemetry data reception of 250 Kbauds. The system enables low-power battery operation with consumption of <200 mW power with ultra-low-power CC1101 radio transceivers and additional circuits with a differential amplifier. The proposed system provides low-cost, low-power and high-accuracy indoor localization and is an essential element of public well-being in future smart homes.

7.
Entropy (Basel) ; 23(3)2021 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-33805765

RESUMO

Offline Arabic Handwriting Recognition (OAHR) has recently become instrumental in the areas of pattern recognition and image processing due to its application in several fields, such as office automation and document processing. However, OAHR continues to face several challenges, including high variability of the Arabic script and its intrinsic characteristics such as cursiveness, ligatures, and diacritics, the unlimited variation in human handwriting, and the lack of large public databases. In this paper, we introduce a novel context-aware model based on deep neural networks to address the challenges of recognizing offline handwritten Arabic text, including isolated digits, characters, and words. Specifically, we propose a supervised Convolutional Neural Network (CNN) model that contextually extracts optimal features and employs batch normalization and dropout regularization parameters. This aims to prevent overfitting and further enhance generalization performance when compared to conventional deep learning models. We employ a number of deep stacked-convolutional layers to design the proposed Deep CNN (DCNN) architecture. The model is extensively evaluated and shown to demonstrate excellent classification accuracy when compared to conventional OAHR approaches on a diverse set of six benchmark databases, including MADBase (Digits), CMATERDB (Digits), HACDB (Characters), SUST-ALT (Digits), SUST-ALT (Characters), and SUST-ALT (Names). A further experimental study is conducted on the benchmark Arabic databases by exploiting transfer learning (TL)-based feature extraction which demonstrates the superiority of our proposed model in relation to state-of-the-art VGGNet-19 and MobileNet pre-trained models. Finally, experiments are conducted to assess comparative generalization capabilities of the models using another language database , specifically the benchmark MNIST English isolated Digits database, which further confirm the superiority of our proposed DCNN model.

8.
Sensors (Basel) ; 20(9)2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32384716

RESUMO

Human motion detection is getting considerable attention in the field of Artificial Intelligence (AI) driven healthcare systems. Human motion can be used to provide remote healthcare solutions for vulnerable people by identifying particular movements such as falls, gait and breathing disorders. This can allow people to live more independent lifestyles and still have the safety of being monitored if more direct care is needed. At present wearable devices can provide real-time monitoring by deploying equipment on a person's body. However, putting devices on a person's body all the time makes it uncomfortable and the elderly tend to forget to wear them, in addition to the insecurity of being tracked all the time. This paper demonstrates how human motions can be detected in a quasi-real-time scenario using a non-invasive method. Patterns in the wireless signals present particular human body motions as each movement induces a unique change in the wireless medium. These changes can be used to identify particular body motions. This work produces a dataset that contains patterns of radio wave signals obtained using software-defined radios (SDRs) to establish if a subject is standing up or sitting down as a test case. The dataset was used to create a machine learning model, which was used in a developed application to provide a quasi-real-time classification of standing or sitting state. The machine-learning model was able to achieve 96.70% accuracy using the Random Forest algorithm using 10 fold cross-validation. A benchmark dataset of wearable devices was compared to the proposed dataset and results showed the proposed dataset to have similar accuracy of nearly 90%. The machine-learning models developed in this paper are tested for two activities but the developed system is designed and applicable for detecting and differentiating x number of activities.


Assuntos
Inteligência Artificial , Atividades Humanas , Dispositivos Eletrônicos Vestíveis , Idoso , Sistemas Computacionais , Atenção à Saúde , Humanos
9.
Sensors (Basel) ; 20(19)2020 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-33023039

RESUMO

COVID-19, caused by SARS-CoV-2, has resulted in a global pandemic recently. With no approved vaccination or treatment, governments around the world have issued guidance to their citizens to remain at home in efforts to control the spread of the disease. The goal of controlling the spread of the virus is to prevent strain on hospitals. In this paper, we focus on how non-invasive methods are being used to detect COVID-19 and assist healthcare workers in caring for COVID-19 patients. Early detection of COVID-19 can allow for early isolation to prevent further spread. This study outlines the advantages and disadvantages and a breakdown of the methods applied in the current state-of-the-art approaches. In addition, the paper highlights some future research directions, which need to be explored further to produce innovative technologies to control this pandemic.


Assuntos
Técnicas de Laboratório Clínico/métodos , Infecções por Coronavirus/diagnóstico , Pulmão/diagnóstico por imagem , Pneumonia Viral/diagnóstico , COVID-19 , Teste para COVID-19 , Infecções por Coronavirus/diagnóstico por imagem , Infecções por Coronavirus/etiologia , Humanos , Pulmão/virologia , Pandemias , Pneumonia Viral/diagnóstico por imagem , Pneumonia Viral/etiologia , Termografia/métodos , Tomografia Computadorizada por Raios X , Ultrassonografia/métodos
10.
PLoS One ; 19(4): e0288223, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38662689

RESUMO

The Covid-19 pandemic has highlighted an era in hearing health care that necessitates a comprehensive rethinking of audiology service delivery. There has been a significant increase in the number of individuals with hearing loss who seek information online. An estimated 430 million individuals worldwide suffer from hearing loss, including 11 million in the United Kingdom. The objective of this study was to identify National Health Service (NHS) audiology service social media posts and understand how they were used to communicate service changes within audiology departments at the onset of the Covid-19 pandemic. Facebook and Twitter posts relating to audiology were extracted over a six week period (March 23 to April 30 2020) from the United Kingdom. We manually filtered the posts to remove those not directly linked to NHS audiology service communication. The extracted data was then geospatially mapped, and themes of interest were identified via a manual review. We also calculated interactions (likes, shares, comments) per post to determine the posts' efficacy. A total of 981 Facebook and 291 Twitter posts were initially mined using our keywords, and following filtration, 174 posts related to NHS audiology change of service were included for analysis. The results were then analysed geographically, along with an assessment of the interactions and sentiment analysis within the included posts. NHS Trusts and Boards should consider incorporating and promoting social media to communicate service changes. Users would be notified of service modifications in real-time, and different modalities could be used (e.g. videos), resulting in a more efficient service.


Assuntos
Audiologia , COVID-19 , Comunicação , Mídias Sociais , Humanos , COVID-19/epidemiologia , COVID-19/psicologia , Reino Unido/epidemiologia , Atenção à Saúde , Pandemias , SARS-CoV-2 , Medicina Estatal , Perda Auditiva/epidemiologia
11.
IEEE Rev Biomed Eng ; 16: 171-191, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35254990

RESUMO

WiFi sensing has received recent and significant interest from academia, industry, healthcare professionals, and other caregivers (including family members) as a potential mechanism to monitor our aging population at a distance without deploying devices on users' bodies. In particular, these methods have the potential to detect critical events such as falls, sleep disturbances, wandering behavior, respiratory disorders, and abnormal cardiac activity experienced by vulnerable people. The interest in such WiFi-based sensing systems arises from practical advantages including its ease of operation indoors as well as ready compliance from monitored individuals. Unlike other sensing methods, such as wearables, camera-based imaging, and acoustic-based solutions, WiFi technology is easy to implement and unobtrusive. This paper reviews the current state-of-the-art research on collecting and analyzing channel state information extracted using ubiquitous WiFi signals, describing a range of healthcare applications and identifying a series of open research challenges, including untapped areas of research and related trends. This work aims to provide an overarching view in understanding the technology and discusses its use-cases from a perspective that considers hardware, advanced signal processing, and data acquisition.


Assuntos
Cuidadores , Processamento de Sinais Assistido por Computador , Humanos , Idoso , Atenção à Saúde
12.
JMIR Public Health Surveill ; 8(5): e32543, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35144240

RESUMO

BACKGROUND: The rollout of vaccines for COVID-19 in the United Kingdom started in December 2020. Uptake has been high, and there has been a subsequent reduction in infections, hospitalizations, and deaths among vaccinated individuals. However, vaccine hesitancy remains a concern, in particular relating to adverse effects following immunization (AEFIs). Social media analysis has the potential to inform policy makers about AEFIs being discussed by the public as well as public attitudes toward the national immunization campaign. OBJECTIVE: We sought to assess the frequency and nature of AEFI-related mentions on social media in the United Kingdom and to provide insights on public sentiments toward COVID-19 vaccines. METHODS: We extracted and analyzed over 121,406 relevant Twitter and Facebook posts, from December 8, 2020, to April 30, 2021. These were thematically filtered using a 2-step approach, initially using COVID-19-related keywords and then using vaccine- and manufacturer-related keywords. We identified AEFI-related keywords and modeled their word frequency to monitor their trends over 2-week periods. We also adapted and utilized our recently developed hybrid ensemble model, which combines state-of-the-art lexicon rule-based and deep learning-based approaches, to analyze sentiment trends relating to the main vaccines available in the United Kingdom. RESULTS: Our COVID-19 AEFI search strategy identified 46,762 unique Facebook posts by 14,346 users and 74,644 tweets (excluding retweets) by 36,446 users over the 4-month period. We identified an increasing trend in the number of mentions for each AEFI on social media over the study period. The most frequent AEFI mentions were found to be symptoms related to appetite (n=79,132, 14%), allergy (n=53,924, 9%), injection site (n=56,152, 10%), and clots (n=43,907, 8%). We also found some rarely reported AEFIs such as Bell palsy (n=11,909, 2%) and Guillain-Barre syndrome (n=9576, 2%) being discussed as frequently as more well-known side effects like headache (n=10,641, 2%), fever (n=12,707, 2%), and diarrhea (n=16,559, 3%). Overall, we found public sentiment toward vaccines and their manufacturers to be largely positive (58%), with a near equal split between negative (22%) and neutral (19%) sentiments. The sentiment trend was relatively steady over time and had minor variations, likely based on political and regulatory announcements and debates. CONCLUSIONS: The most frequently discussed COVID-19 AEFIs on social media were found to be broadly consistent with those reported in the literature and by government pharmacovigilance. We also detected potential safety signals from our analysis that have been detected elsewhere and are currently being investigated. As such, we believe our findings support the use of social media analysis to provide a complementary data source to conventional knowledge sources being used for pharmacovigilance purposes.


Assuntos
COVID-19 , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Mídias Sociais , Vacinas , Inteligência Artificial , COVID-19/epidemiologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Humanos , Farmacovigilância , SARS-CoV-2 , Reino Unido/epidemiologia , Vacinação/efeitos adversos
13.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 2581-2584, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36085897

RESUMO

Current deep learning (DL) based approaches to speech intelligibility enhancement in noisy environments are often trained to minimise the feature distance between noise-free speech and enhanced speech signals. Despite improving the speech quality, such approaches do not deliver required levels of speech intelligibility in everyday noisy environments. Intelligibility-oriented (I-O) loss functions have recently been developed to train DL approaches for robust speech enhancement. Here, we formulate, for the first time, a novel canonical correlation based I-O loss function to more effectively train DL algorithms. Specifically, we present a canonical-correlation based short-time objective intelligibility (CC-STOI) cost function to train a fully convolutional neural network (FCN) model. We carry out comparative simulation experiments to show that our CC-STOI based speech enhancement framework outperforms state-of-the-art DL models trained with conventional distance-based and STOI-based loss functions, using objective and subjective evaluation measures for case of both unseen speakers and noises. Ongoing future work is evaluating the proposed approach for design of robust hearing-assistive technology.


Assuntos
Aprendizado Profundo , Inteligibilidade da Fala , Algoritmos , Análise de Correlação Canônica , Audição
14.
Sci Rep ; 12(1): 3715, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35260675

RESUMO

Personalized hydration level monitoring play vital role in sports, health, wellbeing and safety of a person while performing particular set of activities. Clinical staff must be mindful of numerous physiological symptoms that identify the optimum hydration specific to the person, event and environment. Hence, it becomes extremely critical to monitor the hydration levels in a human body to avoid potential complications and fatalities. Hydration tracking solutions available in the literature are either inefficient and invasive or require clinical trials. An efficient hydration monitoring system is very required, which can regularly track the hydration level, non-invasively. To this aim, this paper proposes a machine learning (ML) and deep learning (DL) enabled hydration tracking system, which can accurately estimate the hydration level in human skin using galvanic skin response (GSR) of human body. For this study, data is collected, in three different hydration states, namely hydrated, mild dehydration (8 hours of dehydration) and extreme mild dehydration (16 hours of dehydration), and three different body postures, such as sitting, standing and walking. Eight different ML algorithms and four different DL algorithms are trained on the collected GSR data. Their accuracies are compared and a hybrid (ML+DL) model is proposed to increase the estimation accuracy. It can be reported that hybrid Bi-LSTM algorithm can achieve an accuracy of 97.83%.


Assuntos
Esportes , Dispositivos Eletrônicos Vestíveis , Desidratação/diagnóstico , Resposta Galvânica da Pele , Humanos , Aprendizado de Máquina
15.
Front Big Data ; 4: 640868, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34240048

RESUMO

With the advancement of social media networks, there are lots of unlabeled reviews available online, therefore it is necessarily to develop automatic tools to classify these types of reviews. To utilize these reviews for user perception, there is a need for automated tools that can process online user data. In this paper, a sentiment analysis framework has been proposed to identify people's perception towards mobile networks. The proposed framework consists of three basic steps: preprocessing, feature selection, and applying different machine learning algorithms. The performance of the framework has taken into account different feature combinations. The simulation results show that the best performance is by integrating unigram, bigram, and trigram features.

16.
Cognit Comput ; 8: 757-771, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27563360

RESUMO

With the advent of Internet, people actively express their opinions about products, services, events, political parties, etc., in social media, blogs, and website comments. The amount of research work on sentiment analysis is growing explosively. However, the majority of research efforts are devoted to English-language data, while a great share of information is available in other languages. We present a state-of-the-art review on multilingual sentiment analysis. More importantly, we compare our own implementation of existing approaches on common data. Precision observed in our experiments is typically lower than the one reported by the original authors, which we attribute to the lack of detail in the original presentation of those approaches. Thus, we compare the existing works by what they really offer to the reader, including whether they allow for accurate implementation and for reliable reproduction of the reported results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA