Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(37): 18684-18690, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31451647

RESUMO

Given the global epidemic in type 2 diabetes, novel antidiabetic drugs with increased efficacy and reduced side effects are urgently needed. Previous work has shown that M3 muscarinic acetylcholine (ACh) receptors (M3Rs) expressed by pancreatic ß cells play key roles in stimulating insulin secretion and maintaining physiological blood glucose levels. In the present study, we tested the hypothesis that a positive allosteric modulator (PAM) of M3R function can improve glucose homeostasis in mice by promoting insulin release. One major advantage of this approach is that allosteric agents respect the ACh-dependent spatiotemporal control of M3R activity. In this study, we first demonstrated that VU0119498, a drug known to act as a PAM at M3Rs, significantly augmented ACh-induced insulin release from cultured ß cells and mouse and human pancreatic islets. This stimulatory effect was absent in islets prepared from mice lacking M3Rs, indicative of the involvement of M3Rs. VU0119498 treatment of wild-type mice caused a significant increase in plasma insulin levels, accompanied by a striking improvement in glucose tolerance. These effects were mediated by ß-cell M3Rs, since they were absent in mutant mice selectively lacking M3Rs in ß cells. Moreover, acute VU0119498 treatment of obese, glucose-intolerant mice triggered enhanced insulin release and restored normal glucose tolerance. Interestingly, doses of VU0119498 that led to pronounced improvements in glucose homeostasis did not cause any significant side effects due to activation of M3Rs expressed by other peripheral cell types. Taken together, the data from this proof-of-concept study strongly suggest that M3R PAMs may become clinically useful as novel antidiabetic agents.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/farmacologia , Ilhotas Pancreáticas/efeitos dos fármacos , Agonistas Muscarínicos/farmacologia , Receptor Muscarínico M3/efeitos dos fármacos , Acetilcolina/metabolismo , Adulto , Regulação Alostérica/efeitos dos fármacos , Animais , Glicemia/análise , Glicemia/metabolismo , Linhagem Celular Tumoral , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animais de Doenças , Feminino , Intolerância à Glucose/sangue , Intolerância à Glucose/tratamento farmacológico , Intolerância à Glucose/metabolismo , Humanos , Hipoglicemiantes/uso terapêutico , Secreção de Insulina/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Masculino , Camundongos , Camundongos Obesos , Camundongos Transgênicos , Pessoa de Meia-Idade , Agonistas Muscarínicos/uso terapêutico , Obesidade/sangue , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Cultura Primária de Células , Estudo de Prova de Conceito , Receptor Muscarínico M3/genética , Receptor Muscarínico M3/metabolismo , Adulto Jovem
2.
Biochim Biophys Acta ; 1862(1): 32-45, 2016 01.
Artigo em Inglês | MEDLINE | ID: mdl-26474534

RESUMO

Metabolic oxidative stress via CYP2E1 can act as a second hit in NASH progression. Our previous studies have shown that oxidative stress in NASH causes higher leptin levels and induces purinergic receptor X7 (P2X7r). We tested the hypothesis that higher circulating leptin due to CYP2E1-mediated oxidative stress induces P2X7r. P2X7r in turn activates stellate cells and causes increased proliferation via modulating Glut4, the glucose transporter, and increased intracellular glucose. Using a high fat diet-fed NAFLD model where bromodichloromethane (BDCM) was administered to induce CYP2E1-mediated oxidative stress, we show that P2X7r expression and protein levels were leptin and CYP2E1 dependent. P2X7r KO mice had significantly decreased stellate cell proliferation. Human NASH livers showed marked increase in P2X7r, and Glut4 in α-SMA positive cells. NASH livers had significant increase in Glut4 protein and phosphorylated AKT, needed for Glut4 translocation while leptin KO and P2X7r KO mice showed marked decrease in Glut4 levels primarily in stellate cells. Mechanistically stellate cells showed increase in phosphorylated AKT, Glut4 protein and localization in the membrane following administration of P2X7r agonist or leptin+P2X7r agonist, while use of P2X7r antagonist or AKT inhibitor attenuated the response suggesting that leptin-P2X7r axis in concert but not leptin alone is responsible for the Glut4 induction and translocation. Finally P2X7r-agonist and leptin caused an increase in intracellular glucose and consumption by increasing the activity of hexokinase. In conclusion, the study shows a novel role of leptin-induced P2X7r in modulating Glut4 induction and translocation in hepatic stellate cells, that are key to NASH progression.


Assuntos
Transportador de Glucose Tipo 4/metabolismo , Células Estreladas do Fígado/metabolismo , Leptina/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Animais , Linhagem Celular , Citocromo P-450 CYP2E1/metabolismo , Células Estreladas do Fígado/patologia , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/patologia , Ratos
3.
Am J Physiol Renal Physiol ; 310(1): F85-F101, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26447219

RESUMO

Obesity and nonalcoholic fatty liver disease (NAFLD) are associated with the development and progression of chronic kidney disease. We recently showed that NAFLD induces liver-specific cytochrome P-450 (CYP)2E1-mediated metabolic oxidative stress after administration of the CYP2E1 substrate bromodichloromethane (BDCM) (Seth RK, Das S, Kumar A, Chanda A, Kadiiska MB, Michelotti G, Manautou J, Diehl AM, Chatterjee S. Toxicol Appl Pharmacol 274: 42-54, 2014; Seth RK, Kumar A, Das S, Kadiiska MB, Michelotti G, Diehl AM, Chatterjee S. Toxicol Sci 134:291-303, 2013). The present study examined the effects of CYP2E1-mediated oxidative stress in NAFLD leading to kidney toxicity. Mice were fed a high-fat diet for 12 wk to induce NAFLD. NAFLD mice were exposed to BDCM, a CYP2E1 substrate, for 4 wk. NAFLD + BDCM increased CYP2E1-mediated lipid peroxidation in proximal tubular cells compared with mice with NAFLD alone or BDCM-treated lean mice, thus ruling out the exclusive role of BDCM. Lipid peroxidation increased IL-1ß, TNF-α, and interferon-γ. In parallel, mesangial cell activation was observed by increased α-smooth muscle actin and transforming growth factor-ß, which was blocked by the CYP2E1 inhibitor diallyl sulphide both in vivo and in vitro. Mice lacking natural killer T cells (CD1d knockout mice) showed elevated (>4-fold) proinflammatory mediator release, increased Toll-like receptor (TLR)4 and PDGF2 mRNA, and mesangial cell activation in the kidney. Finally, NAFLD CD1D knockout mice treated with BDCM exhibited increased high mobility group box 1 and Fas ligand levels and TUNEL-positive nuclei, indicating that higher cell death was attenuated in TLR4 knockout mice. Tubular cells showed increased cell death and cytokine release when incubated with activated mesangial cells. In summary, an underlying condition of progressive NAFLD causes renal immunotoxicity and aberrant glomerular function possibly through high mobility group box 1-dependent TLR4 signaling and mesangial cell activation, which, in turn, is modulated by intrinsic CD1D-dependent natural killer T cells.


Assuntos
Citocromo P-450 CYP2E1/metabolismo , Nefropatias/metabolismo , Túbulos Renais Proximais/metabolismo , Fígado/enzimologia , Células Mesangiais/metabolismo , Células T Matadoras Naturais/metabolismo , Hepatopatia Gordurosa não Alcoólica/enzimologia , Estresse Oxidativo , Animais , Antígenos CD1d/genética , Antígenos CD1d/metabolismo , Morte Celular , Linhagem Celular , Proliferação de Células , Microambiente Celular , Dieta Hiperlipídica , Modelos Animais de Doenças , Fibrose , Proteína HMGB1/metabolismo , Mediadores da Inflamação/metabolismo , Nefropatias/imunologia , Nefropatias/patologia , Túbulos Renais Proximais/imunologia , Túbulos Renais Proximais/patologia , Peroxidação de Lipídeos , Fígado/imunologia , Masculino , Células Mesangiais/imunologia , Células Mesangiais/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células T Matadoras Naturais/imunologia , Hepatopatia Gordurosa não Alcoólica/imunologia , Receptor 4 Toll-Like/deficiência , Receptor 4 Toll-Like/genética , Fator de Crescimento Transformador beta/metabolismo , Trialometanos/metabolismo
4.
Am J Physiol Gastrointest Liver Physiol ; 310(7): G510-25, 2016 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-26718771

RESUMO

Although significant research data exist on the pathophysiology of nonalcoholic steatohepatitis (NASH), finding an efficient treatment regimen for it remains elusive. The present study used sparstolonin B (SsnB), a novel TLR4 antagonist derived from the Chinese herb Sparganium stoloniferum, as a possible drug to mitigate early inflammation in NASH. This study used an early steatohepatitic injury model in high-fat-fed mice with CYP2E1-mediated oxidative stress as a second hit. SsnB was administered for 1 wk along with bromodichloromethane (BDCM), an inducer of CYP2E1-mediated oxidative stress. Results showed that SsnB administration attenuated inflammatory morphology and decreased elevation of the liver enzyme alanine aminotransferase (ALT). Mice administered SsnB also showed decreased mRNA expression of proinflammatory cytokines TNF-α, IFN-γ, IL-1ß, and IL-23, while protein levels of both TNF-α and IL-1ß were significantly decreased. SsnB significantly decreased Kupffer cell activation as evidenced by reduction in CD68 and monocyte chemoattractant protein-1 (MCP1) mRNA and protein levels with concomitant inhibition of macrophage infiltration in the injured liver. Mechanistically, SsnB decreased TLR4 trafficking to the lipid rafts, a phenomenon described by the colocalization of TLR4 and lipid raft marker flotillin in tissues and immortalized Kupffer cells. Since we have shown previously that NADPH oxidase drives TLR4 trafficking in NASH, we studied the role of SsnB in modulating this pathway. SsnB prevented NADPH oxidase activation in vivo and in vitro as indicated by decreased peroxynitrite formation. In summary, the present study reports a novel use of the TLR4 antagonist SsnB in mitigating inflammation in NASH and in parallel shows a unique molecular mechanism of decreasing nitrative stress.


Assuntos
Anti-Inflamatórios/farmacologia , Hepatite/prevenção & controle , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Fígado/efeitos dos fármacos , Microdomínios da Membrana/efeitos dos fármacos , NADPH Oxidases/metabolismo , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Receptor 4 Toll-Like/antagonistas & inibidores , Animais , Linhagem Celular , Citocromo P-450 CYP2E1/biossíntese , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Ativação Enzimática , Indução Enzimática , Hepatite/enzimologia , Hepatite/genética , Hepatite/patologia , Mediadores da Inflamação/metabolismo , Células de Kupffer/efeitos dos fármacos , Células de Kupffer/metabolismo , Células de Kupffer/patologia , Fígado/enzimologia , Fígado/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/enzimologia , Masculino , Microdomínios da Membrana/enzimologia , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Hepatopatia Gordurosa não Alcoólica/enzimologia , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Estresse Oxidativo/efeitos dos fármacos , PTEN Fosfo-Hidrolase/metabolismo , Ácido Peroxinitroso/metabolismo , Transporte Proteico , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
5.
Am J Pathol ; 185(7): 1944-57, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25989356

RESUMO

The molecular events that link NADPH oxidase activation and the induction of Toll-like receptor (TLR)-4 recruitment into hepatic lipid rafts in nonalcoholic steatohepatitis (NASH) are unclear. We hypothesized that in liver, NADPH oxidase activation is key in TLR4 recruitment into lipid rafts, which in turn up-regulates NF-κB translocation to the nucleus and subsequent DNA binding, leading to NASH progression. Results from confocal microscopy showed that liver from murine and human NASH had NADPH oxidase activation, which led to the formation of highly reactive peroxynitrite, as shown by 3-nitrotyrosine formation in diseased liver. Expression and recruitment of TLR4 into the lipid rafts were significantly greater in rodent and human NASH. The described phenomenon was NADPH oxidase, p47phox, and peroxynitrite dependent, as liver from p47phox-deficient mice and from mice treated with a peroxynitrite decomposition catalyst [iron(III) tetrakis(p-sulfonatophenyl)porphyrin] or a peroxynitrite scavenger (phenylboronic acid) had markedly less Tlr4 recruitment into lipid rafts. Mechanistically, peroxynitrite-induced TLR4 recruitment was linked to increased IL-1ß, sinusoidal injury, and Kupffer cell activation while blocking peroxynitrite-attenuated NASH symptoms. The results strongly suggest that NADPH oxidase-mediated peroxynitrite drove TLR4 recruitment into hepatic lipid rafts and inflammation, whereas the in vivo use of the peroxynitrite scavenger phenylboronic acid, a novel synthetic molecule having high reactivity with peroxynitrite, attenuates inflammatory pathogenesis in NASH.


Assuntos
Microdomínios da Membrana/patologia , NADPH Oxidases/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Ácido Peroxinitroso/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Ácidos Borônicos/farmacologia , Humanos , Inflamação/tratamento farmacológico , Inflamação/patologia , Fígado/lesões , Fígado/metabolismo , Fígado/patologia , Masculino , Microdomínios da Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Camundongos Transgênicos , NF-kappa B/metabolismo , Hepatopatia Gordurosa não Alcoólica/enzimologia , Transdução de Sinais , Organismos Livres de Patógenos Específicos , Receptor 4 Toll-Like/genética , Tirosina/análogos & derivados , Tirosina/metabolismo
6.
Am J Physiol Gastrointest Liver Physiol ; 308(4): G298-312, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25501551

RESUMO

Hepatic fibrosis in nonalcoholic steatohepatitis (NASH) is the common pathophysiological process resulting from chronic liver inflammation and oxidative stress. Although significant research has been carried out on the role of leptin-induced NADPH oxidase in fibrogenesis, the molecular mechanisms that connect the leptin-NADPH oxidase axis in upregulation of transforming growth factor (TGF)-ß signaling have been unclear. We aimed to investigate the role of leptin-mediated upregulation of NADPH oxidase and its subsequent induction of micro-RNA 21 (miR21) in fibrogenesis. Human NASH livers and a high-fat (60% kcal) diet-fed chronic mouse model, where hepatotoxin bromodichloromethane was used to induce NASH, were used for this study. To prove the role of the leptin-NADPH oxidase-miR21 axis, mice deficient in genes for leptin, p47phox, and miR21 were used. Results showed that wild-type mice and human livers with NASH had increased oxidative stress, increased p47phox expression, augmented NF-κB activation, and increased miR21 levels. These mice and human livers showed increased TGF-ß, SMAD2/3-SMAD4 colocalizations in the nucleus, increased immunoreactivity against Col1α, and α-SMA with a concomitant decrease in protein levels of SMAD7. Mice that were deficient in leptin or p47phox had decreased activated NF-κB and miR21 levels, suggesting the role of leptin and NADPH oxidase in inducing NF-κB-mediated miR21 expression. Further miR21 knockout mice had decreased colocalization events of SMAD2/3-SMAD4 in the nucleus, increased SMAD7 levels, and decreased fibrogenesis. Taken together, the studies show the novel role of leptin-NADPH oxidase induction of miR21 as a key regulator of TGF-ß signaling and fibrogenesis in experimental and human NASH.


Assuntos
Leptina/metabolismo , Fígado/enzimologia , MicroRNAs/metabolismo , NADPH Oxidases/metabolismo , Hepatopatia Gordurosa não Alcoólica/enzimologia , Interferência de RNA , Proteína Smad7/metabolismo , Animais , Estudos de Casos e Controles , Núcleo Celular/metabolismo , Dieta Hiperlipídica , Modelos Animais de Doenças , Humanos , Leptina/deficiência , Leptina/genética , Fígado/patologia , Masculino , Glicoproteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , NADPH Oxidase 2 , NADPH Oxidases/deficiência , NADPH Oxidases/genética , NF-kappa B/metabolismo , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Estresse Oxidativo , Ácido Peroxinitroso/metabolismo , Transdução de Sinais , Proteínas Smad Reguladas por Receptor/metabolismo , Proteína Smad4/metabolismo , Proteína Smad7/deficiência , Proteína Smad7/genética , Fator de Crescimento Transformador beta/metabolismo , Trialometanos
7.
J Pharmacol Exp Ther ; 352(1): 77-89, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25347994

RESUMO

Activation of M1 macrophages in nonalcoholic steatohepatitis (NASH) is produced by several external or endogenous factors: inflammatory stimuli, oxidative stress, and cytokines are known. However, any direct role of oxidative stress in causing M1 polarization in NASH has been unclear. We hypothesized that CYP2E1-mediated oxidative stress causes M1 polarization in experimental NASH, and that nitric oxide (NO) donor administration inhibits CYP2E1-mediated inflammation with concomitant attenuation of M1 polarization. Because CYP2E1 takes center stage in these studies, we used a toxin model of NASH that uses a ligand and a substrate of CYP2E1 for inducing NASH. Subsequently, we used a methionine and choline-deficient diet-induced rodent NASH model where the role of CYP2E1 in disease progression has been shown. Our results show that CYP2E1 causes M1 polarization bias, which includes a significant increase in interleukin-1ß (IL-1ß) and IL-12 in both models of NASH, whereas CYP2E1-null mice or diallyl sulfide administration prevented it. Administration of gadolinium chloride (GdCl3), a macrophage toxin, attenuated both the initial M1 response and the subsequent M2 response, showing that the observed increase in cytokine levels is primarily from macrophages. Based on the evidence of an adaptive NO increase, the NO donor administration in vivo that mechanistically inhibited CYP2E1 catalyzed the oxidative stress during the entire study in NASH-abrogated M1 polarization and NASH progression. The results obtained show the association of CYP2E1 in M1 polarization, and that inhibition of CYP2E1 catalyzed oxidative stress by an NO donor (DETA NONOate [(Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate]) can be a promising therapeutic strategy in NASH.


Assuntos
Citocromo P-450 CYP2E1/metabolismo , Progressão da Doença , Macrófagos/efeitos dos fármacos , Compostos Nitrosos/farmacologia , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Animais , Citocromo P-450 CYP2E1/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Macrófagos/citologia , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Obesos , Doadores de Óxido Nítrico/farmacologia , Doadores de Óxido Nítrico/uso terapêutico , Compostos Nitrosos/uso terapêutico , Hepatopatia Gordurosa não Alcoólica/imunologia , Hepatopatia Gordurosa não Alcoólica/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Tirosina/metabolismo
8.
Nat Commun ; 15(1): 5129, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879678

RESUMO

Glucagon, a hormone released from pancreatic α-cells, is critical for maintaining euglycemia and plays a key role in the pathophysiology of diabetes. To stimulate the development of new classes of therapeutic agents targeting glucagon release, key α-cell signaling pathways that regulate glucagon secretion need to be identified. Here, we focused on the potential importance of α-cell Gs signaling on modulating α-cell function. Studies with α-cell-specific mouse models showed that activation of α-cell Gs signaling causes a marked increase in glucagon secretion. We also found that intra-islet adenosine plays an unexpected autocrine/paracrine role in promoting glucagon release via activation of α-cell Gs-coupled A2A adenosine receptors. Studies with α-cell-specific Gαs knockout mice showed that α-cell Gs also plays an essential role in stimulating the activity of the Gcg gene, thus ensuring proper islet glucagon content. Our data suggest that α-cell enriched Gs-coupled receptors represent potential targets for modulating α-cell function for therapeutic purposes.


Assuntos
Subunidades alfa Gs de Proteínas de Ligação ao GTP , Células Secretoras de Glucagon , Glucagon , Camundongos Knockout , Transdução de Sinais , Glucagon/metabolismo , Animais , Células Secretoras de Glucagon/metabolismo , Camundongos , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Adenosina/metabolismo , Receptor A2A de Adenosina/metabolismo , Receptor A2A de Adenosina/genética , Masculino , Camundongos Endogâmicos C57BL , Ilhotas Pancreáticas/metabolismo
9.
JCI Insight ; 6(24)2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34752420

RESUMO

Glucagon, a hormone released from pancreatic α cells, plays a key role in maintaining euglycemia. New insights into the signaling pathways that control glucagon secretion may stimulate the development of novel therapeutic agents. In this study, we investigated the potential regulation of α cell function by G proteins of the Gq family. The use of a chemogenetic strategy allowed us to selectively activate Gq signaling in mouse α cells in vitro and in vivo. Acute stimulation of α cell Gq signaling led to elevated plasma glucagon levels, accompanied by increased insulin release and improved glucose tolerance. Moreover, chronic activation of this pathway greatly improved glucose tolerance in obese mice. We also identified an endogenous Gq-coupled receptor (vasopressin 1b receptor; V1bR) that was enriched in mouse and human α cells. Agonist-induced activation of the V1bR strongly stimulated glucagon release in a Gq-dependent fashion. In vivo studies indicated that V1bR-mediated glucagon release played a key role in the counterregulatory hyperglucagonemia under hypoglycemic and glucopenic conditions. These data indicate that α cell Gq signaling represents an important regulator of glucagon secretion, resulting in multiple beneficial metabolic effects. Thus, drugs that target α cell-enriched Gq-coupled receptors may prove useful to restore euglycemia in various pathophysiological conditions.


Assuntos
Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Hipoglicemiantes/metabolismo , Transdução de Sinais/imunologia , Animais , Humanos , Masculino , Camundongos
10.
Diabetes ; 68(6): 1341-1352, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30936140

RESUMO

Skeletal muscle (SKM) insulin resistance plays a central role in the pathogenesis of type 2 diabetes. Because G-protein-coupled receptors (GPCRs) represent excellent drug targets, we hypothesized that activation of specific functional classes of SKM GPCRs might lead to improved glucose homeostasis in type 2 diabetes. At present, little is known about the in vivo metabolic roles of the various distinct GPCR signaling pathways operative in SKM. In this study, we tested the hypothesis that selective activation of SKM Gq signaling can improve SKM glucose uptake and whole-body glucose homeostasis under physiological and pathophysiological conditions. Studies with transgenic mice expressing a Gq-linked designer GPCR selectively in SKM cells demonstrated that receptor-mediated activation of SKM Gq signaling greatly promoted glucose uptake into SKM and significantly improved glucose homeostasis in obese, glucose-intolerant mice. These beneficial metabolic effects required the activity of SKM AMPK. In contrast, obese mutant mice that lacked both Gαq and Gα11 selectively in SKM showed severe deficits in glucose homeostasis. Moreover, GPCR-mediated activation of Gq signaling also stimulated glucose uptake in primary human SKM cells. Taken together, these findings strongly suggest that agents capable of enhancing SKM Gq signaling may prove useful as novel antidiabetic drugs.


Assuntos
Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Intolerância à Glucose/metabolismo , Glucose/metabolismo , Resistência à Insulina , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Adenilato Quinase/metabolismo , Animais , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Camundongos , Camundongos Obesos , Camundongos Transgênicos , Mioblastos Esqueléticos , Transdução de Sinais
11.
JCI Insight ; 52019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31012868

RESUMO

Glucagon, a hormone released from pancreatic alpha-cells, plays a key role in maintaining proper glucose homeostasis and has been implicated in the pathophysiology of diabetes. In vitro studies suggest that intra-islet glucagon can modulate the function of pancreatic beta-cells. However, because of the lack of suitable experimental tools, the in vivo physiological role of this intra-islet cross-talk has remained elusive. To address this issue, we generated a novel mouse model that selectively expressed an inhibitory designer G protein-coupled receptor (Gi DREADD) in α-cells only. Drug-induced activation of this inhibitory designer receptor almost completely shut off glucagon secretion in vivo, resulting in significantly impaired insulin secretion, hyperglycemia, and glucose intolerance. Additional studies with mouse and human islets indicated that intra-islet glucagon stimulates insulin release primarily by activating ß-cell GLP-1 receptors. These new findings strongly suggest that intra-islet glucagon signaling is essential for maintaining proper glucose homeostasis in vivo. Our work may pave the way toward the development of novel classes of antidiabetic drugs that act by modulating intra-islet cross-talk between α- and ß-cells.


Assuntos
Glicemia/metabolismo , Células Secretoras de Glucagon/metabolismo , Glucagon/metabolismo , Hiperglicemia/fisiopatologia , Células Secretoras de Insulina/metabolismo , Comunicação Parácrina/fisiologia , Animais , Modelos Animais de Doenças , Feminino , Glucagon/sangue , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Células Secretoras de Glucagon/efeitos dos fármacos , Humanos , Hiperglicemia/sangue , Hiperglicemia/tratamento farmacológico , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Insulina/sangue , Insulina/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Comunicação Parácrina/efeitos dos fármacos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos
12.
Eur J Pharmacol ; 841: 33-48, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30194936

RESUMO

SsnB previously showed a promising role to lessen liver inflammation observed in a mouse model of NAFLD. Since NAFLD can progress to fibrosis, studies were designed to unravel its role in attenuating NAFLD associated fibrosis. Using both in vivo and in vitro approaches, the study probed the possible mechanisms that underlined the role of SsnB in mitigating fibrosis. Mechanistically, SsnB, a TLR4 antagonist, decreased TLR4-PI3k akt signaling by upregulating PTEN protein expression. It also decreased MDM2 protein activation and increased p53 and p21 gene and protein expression. SsnB also downregulated pro-fibrogenic hedgehog signaling pathway, inhibited hepatic stellate cell proliferation and induced apoptosis in hepatic stellate cells, a mechanism that was LPS dependent. Further, SsnB decreased fibrosis by antagonizing TLR4 induced TGFß signaling pathway. Alternatively, SsnB augmented BAMBI (a TGFß pseudo-receptor) expression in mice liver by inhibiting TLR4 signaling pathway and thus reduced TGFß signaling, resulting in decreased hepatic stellate cell activation and extracellular matrix deposition. In vitro experiments on human hepatic stellate cell line showed that SsnB increased gene and protein expression of BAMBI. It also decreased nuclear co-localization of phospho SMAD2/3 and SMAD4 protein and thus attenuated TGFß signaling in vitro. We also observed a significant decrease in phosphorylation of SMAD2/3 protein, decreased STAT3 activation, alteration of focal adhesion protein and stress fiber disassembly upon SsnB administration in hepatic stellate cells which further confirmed the antagonistic effect of SsnB on TLR4-induced fibrogenesis.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Adesões Focais/efeitos dos fármacos , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Cirrose Hepática/tratamento farmacológico , Receptor 4 Toll-Like/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Ciclina E/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Fibronectinas/metabolismo , Adesões Focais/metabolismo , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/patologia , Compostos Heterocíclicos de 4 ou mais Anéis/uso terapêutico , Humanos , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , PTEN Fosfo-Hidrolase/metabolismo , Fosforilação/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fibras de Estresse/efeitos dos fármacos , Fibras de Estresse/metabolismo , Regulação para Cima/efeitos dos fármacos
13.
Redox Biol ; 17: 1-15, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29660503

RESUMO

High circulatory insulin and leptin followed by underlying inflammation are often ascribed to the ectopic manifestations in non-alcoholic fatty liver disease (NAFLD) but the exact molecular pathways remain unclear. We have shown previously that CYP2E1-mediated oxidative stress and circulating leptin in NAFLD is associated with renal disease severity. Extending the studies, we hypothesized that high circulatory leptin in NAFLD causes renal mesangial cell activation and tubular inflammation via a NOX2 dependent pathway that upregulates proinflammatory miR21. High-fat diet (60% kcal) was used to induce fatty liver phenotype with parallel insulin and leptin resistance. The kidneys were probed for mesangial cell activation and tubular inflammation that showed accelerated NASH phenotype and oxidative stress in the liver. Results showed that NAFLD kidneys had significant increases in α-SMA, a marker of mesangial cell activation, miR21 levels, tyrosine nitration and renal inflammation while they were significantly decreased in leptin and p47 phox knockout mice. Micro RNA21 knockout mice showed decreased tubular immunotoxicity and proinflammatory mediator release. Mechanistically, use of NOX2 siRNA or apocynin,phenyl boronic acid (FBA), DMPO or miR21 antagomir inhibited leptin primed-miR21-mediated mesangial cell activation in vitro suggesting a direct role of leptin-mediated NOX-2 in miR21-mediated mesangial cell activation. Finally, JAK-STAT inhibitor completely abrogated the mesangial cell activation in leptin-primed cells suggesting that leptin signaling in the mesangial cells depended on the JAK-STAT pathway. Taken together the study reports a novel mechanistic pathway of leptin-mediated renal inflammation that is dependent on NOX-2-miR21 axis in ectopic manifestations underlying NAFLD-induced co-morbidities.


Assuntos
Inflamação/genética , MicroRNAs/genética , NADPH Oxidase 2/genética , Hepatopatia Gordurosa não Alcoólica/genética , ATPases Associadas a Diversas Atividades Celulares/genética , Animais , DNA Helicases/genética , Dieta Hiperlipídica , Humanos , Inflamação/metabolismo , Inflamação/patologia , Janus Quinases/genética , Rim/metabolismo , Rim/patologia , Leptina/genética , Células Mesangiais/metabolismo , Células Mesangiais/patologia , Camundongos , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Estresse Oxidativo/genética , Ácido Peroxinitroso/metabolismo , Fatores de Transcrição STAT/genética , Transdução de Sinais/genética
14.
Redox Biol ; 13: 8-19, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28551086

RESUMO

Recent clinical studies found a strong association of colonic inflammation and Inflammatory bowel disease (IBD)-like phenotype with NonAlcoholic Fatty liver Disease (NAFLD) yet the mechanisms remain unknown. The present study identifies high mobility group box 1 (HMGB1) as a key mediator of intestinal inflammation in NAFLD and outlines a detailed redox signaling mechanism for such a pathway. NAFLD mice showed liver damage and release of elevated HMGB1 in systemic circulation and increased intestinal tyrosine nitration that was dependent on NADPH oxidase. Intestines from NAFLD mice showed higher Toll like receptor 4 (TLR4) activation and proinflammatory cytokine release, an outcome strongly dependent on the existence of NAFLD pathology and NADPH oxidase. Mechanistically intestinal epithelial cells showed the HMGB1 activation of TLR-4 was both NADPH oxidase and peroxynitrite dependent with the latter being formed by the activation of NADPH oxidase. Proinflammatory cytokine production was significantly blocked by the specific peroxynitrite scavenger phenyl boronic acid (FBA), AKT inhibition and NADPH oxidase inhibitor Apocynin suggesting NADPH oxidase-dependent peroxynitrite is a key mediator in TLR-4 activation and cytokine release via an AKT dependent pathway. Studies to ascertain the mechanism of HMGB1-mediated NADPH oxidase activation showed a distinct role of Receptor for advanced glycation end products (RAGE) as the use of inhibitors targeted against RAGE or use of deformed HMGB1 protein prevented NADPH oxidase activation, peroxynitrite formation, TLR4 activation and finally cytokine release. Thus, in conclusion the present study identifies a novel role of HMGB1 mediated inflammatory pathway that is RAGE and redox signaling dependent and helps promote ectopic intestinal inflammation in NAFLD.


Assuntos
Proteína HMGB1/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Ácido Peroxinitroso/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Transdução de Sinais , Animais , Linhagem Celular , Citocinas/metabolismo , Enterócitos/metabolismo , Doenças Inflamatórias Intestinais/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NADPH Oxidases/metabolismo , Hepatopatia Gordurosa não Alcoólica/complicações , Ratos , Receptor 4 Toll-Like/metabolismo
15.
Free Radic Biol Med ; 102: 260-273, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27913210

RESUMO

NAFLD is a clinically progressive disease with steatosis, inflammation, endothelial dysfunction and fibrosis being the stages where clinical intervention becomes necessary. Lack of early biomarkers and absence of a FDA approved drug obstructs efforts for effective treatment. NAFLD progression is strongly linked to a balance between liver injury, tissue regeneration and the functioning of endogenous defense mechanisms. The failure of the defense pathways to resist the tissue damage arising from redox stress, one of the "multiple hits" in disease progression, give rise to heightened inflammation and occasional fibrosis. We introduce an endogenous defense mechanism in the liver that is mediated by TRPV4, a transient receptor potential calcium-permeable ion channel that responds to the cytotoxic liver environment and negatively regulates CYP2E1, a cytochrome p450 enzyme. Using Trpv4-/- mice and cultured primary cells, we show that TRPV4 is activated both by damage associated molecular pattern HMGB1 and collagen in diseased Kupffer cells that in turn activate the endothelial NOS (NOS3) to release nitric oxide (NO). The diffusible NO acts in a paracrine fashion in neighboring hepatocytes to deactivate the redox toxicity induced by CYP2E1. We also find that CYP2E1-mediated TRPV4 repression in late stages causes an unrestricted progression of disease. Thus, TRPV4 functions as a sensor of cell stress in the diseased fatty liver and constitutes an endogenous defense molecule, a novel concept with potential for therapeutic approaches against NAFLD, perhaps also against hepatic drug toxicity in general.


Assuntos
Citocromo P-450 CYP2E1/genética , Óxido Nítrico Sintase Tipo III/genética , Hepatopatia Gordurosa não Alcoólica/genética , Canais de Cátion TRPV/genética , Animais , Citocromo P-450 CYP2E1/metabolismo , Modelos Animais de Doenças , Fibrose/genética , Fibrose/metabolismo , Fibrose/patologia , Regulação da Expressão Gênica , Proteína HMGB1/genética , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Fígado/metabolismo , Fígado/patologia , Camundongos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Oxirredução , Estresse Oxidativo/genética , Canais de Cátion TRPV/metabolismo , Ativação Transcricional/genética
16.
PLoS One ; 12(3): e0172914, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28328972

RESUMO

Many of the symptoms of Gulf War Illness (GWI) that include neurological abnormalities, neuroinflammation, chronic fatigue and gastrointestinal disturbances have been traced to Gulf War chemical exposure. Though the association and subsequent evidences are strong, the mechanisms that connect exposure to intestinal and neurological abnormalities remain unclear. Using an established rodent model of Gulf War Illness, we show that chemical exposure caused significant dysbiosis in the gut that included increased abundance of phylum Firmicutes and Tenericutes, and decreased abundance of Bacteroidetes. Several gram negative bacterial genera were enriched in the GWI-model that included Allobaculum sp. Altered microbiome caused significant decrease in tight junction protein Occludin with a concomitant increase in Claudin-2, a signature of a leaky gut. Resultant leaching of gut caused portal endotoxemia that led to upregulation of toll like receptor 4 (TLR4) activation in the small intestine and the brain. TLR4 knock out mice and mice that had gut decontamination showed significant decrease in tyrosine nitration and inflammatory mediators IL1ß and MCP-1 in both the small intestine and frontal cortex. These events signified that gut dysbiosis with simultaneous leaky gut and systemic endotoxemia-induced TLR4 activation contributes to GW chemical-induced neuroinflammation and gastrointestinal disturbances.


Assuntos
Lobo Frontal/metabolismo , Microbioma Gastrointestinal/fisiologia , Inflamação/metabolismo , Enteropatias/metabolismo , Enteropatias/microbiologia , Síndrome do Golfo Pérsico/microbiologia , Receptor 4 Toll-Like/metabolismo , Animais , Claudina-2/metabolismo , Modelos Animais de Doenças , Disbiose/metabolismo , Endotoxemia/metabolismo , Guerra do Golfo , Inflamação/microbiologia , Mucosa Intestinal/metabolismo , Intestinos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Síndrome do Golfo Pérsico/metabolismo
17.
PLoS One ; 10(2): e0116780, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25658689

RESUMO

Sinusoidal endothelial dysfunction (SED) has been found to be an early event in nonalcoholic steatohepatitis (NASH) progression but the molecular mechanisms underlying its causation remains elusive. We hypothesized that adipokine leptin worsens sinusoidal injury by decreasing functionally active nitric oxide synthase 3 (NOS)3 via miR21. Using rodent models of NASH, and transgenic mice lacking leptin and leptin receptor, results showed that hyperleptinemia caused a 4-5 fold upregulation of hepatic miR21 as assessed by qRTPCR. The upregulation of miR21 led to a time-dependent repression of its target protein Grhl3 levels as shown by western blot analyses. NOS3-p/NOS3 ratio which is controlled by Grhl3 was significantly decreased in NASH models. SED markers ICAM-1, VEGFR-2, and E-selectin as assessed by immunofluorescence microscopy were significantly up regulated in the progressive phases of NASH. Lack of leptin or its receptor in vivo, reversed the upregulation of miR21 and restored the levels of Grhl3 and NOS3-p/NOS3 ratio coupled with decreased SED dysfunction markers. Interestingly, leptin supplementation in mice lacking leptin, significantly enhanced miR21 levels, decreased Grhl3 repression and NOS3 phosphorylation. Leptin supplementation in isolated primary endothelial cells, Kupffer cells and stellate cells showed increased mir21 expression in stellate cells while sinusoidal injury was significantly higher in all cell types. Finally miR21 KO mice showed increased NOS3-p/NOS3 ratio and reversed SED markers in the rodent models of NASH. The experimental results described here show a close association of leptin-induced miR21 in aiding sinusoidal injury in NASH.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Endotélio/metabolismo , Regulação da Expressão Gênica/genética , Leptina/metabolismo , MicroRNAs/metabolismo , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fatores de Transcrição/metabolismo , Animais , Western Blotting , Endotélio/fisiopatologia , Leptina/genética , Fígado/metabolismo , Camundongos , Camundongos Transgênicos , Hepatopatia Gordurosa não Alcoólica/genética , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA