Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Mol Cell ; 46(3): 369-76, 2012 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-22483618

RESUMO

Methylation of lysine 4 (K4) within histone H3 has been linked to active transcription and is removed by LSD1 and the JmjC domain-containing proteins by amino-oxidation or hydroxylation, respectively. Here, we describe the deamination catalyzed by Lysyl oxidase-like 2 protein (LOXL2) as an unconventional chemical mechanism for H3K4 modification. Infrared spectroscopy and mass spectrometry analyses demonstrated that recombinant LOXL2 specifically deaminates trimethylated H3K4. Moreover, LOXL2 activity is linked with the transcriptional control of CDH1 gene by regulating H3K4me3 deamination. These results reveal another H3 modification and provide a different mechanism for H3K4 modification.


Assuntos
Aminoácido Oxirredutases/fisiologia , Histonas/metabolismo , Antígenos CD , Caderinas/genética , Linhagem Celular Tumoral , Desaminação , Regulação da Expressão Gênica , Humanos , Lisina/metabolismo , Metilação
4.
J Cell Sci ; 124(Pt 13): 2298-309, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21670201

RESUMO

p120-catenin is an E-cadherin-associated protein that modulates E-cadherin function and stability. In response to Wnt3a, p120-catenin is phosphorylated at Ser268 and Ser269, disrupting its interaction with E-cadherin. Here, we describe that Wnt-induced p120-catenin phosphorylation at Ser268 and Ser269 also enhances its binding to the transcriptional factor Kaiso, preventing Kaiso-mediated inhibition of the ß-catenin-Tcf-4 transcriptional complex. Kaiso-mediated repression of this complex is due to its association not only with Tcf-4 but also with ß-catenin. Disruption of Tcf-4-Kaiso and ß-catenin-Kaiso interactions by p120-catenin not only releases Tcf-4 and ß-catenin enabling its mutual association and the formation of the transcriptional complex but also permits Kaiso binding to methylated CpG islands, an interaction that is weakly inhibited by p120-catenin. Consequently, Wnt stimulates Kaiso association to the CDKN2A promoter, which contains CpG sequences, in cells where these sequences are extensively methylated, such as HT-29 M6, an effect accompanied by decreased expression of its gene product. These results indicate that, when released from E-cadherin by Wnt3a-stimulated phosphorylation, p120-catenin controls the activity of the Kaiso transcriptional factor, enhancing its binding to repressed promoters and relieving its inhibition of the ß-catenin-Tcf-4 transcriptional complex.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Cateninas/metabolismo , Fatores de Transcrição/metabolismo , Ativação Transcricional , Proteína Wnt3A/metabolismo , Caderinas/metabolismo , Cateninas/genética , Ilhas de CpG , Genes p16 , Humanos , Metilação , Fosforilação , Regiões Promotoras Genéticas , Ligação Proteica , Transdução de Sinais/genética , Fator de Transcrição 4 , beta Catenina/metabolismo , delta Catenina
5.
J Biol Chem ; 286(14): 12024-32, 2011 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-21317430

RESUMO

Snail1 and Zeb1 are E-cadherin-transcriptional repressors induced during epithelial mesenchymal transition (EMT). In this article we have analyzed the factors controlling Zeb1 expression during EMT. In NMuMG cells treated with TGF-ß, Snail1 RNA and protein are induced 1 h after addition of the cytokine preceding Zeb1 up-regulation that requires 6-8 h. Zeb1 gene expression is caused by increased RNA levels but also by enhanced protein stability and is markedly dependent on Snail1 because depletion of this protein prevents Zeb1 protein and RNA up-regulation. In addition to Snail1, depletion of the Twist transcriptional factor retards Zeb1 stimulation by TGF-ß or decreases Zeb1 expression in other cellular models indicating that this factor is also required for Zeb1 expression. Accordingly, Snail1 and Twist cooperate in the induction of Zeb1: co-transfection of both cDNAs is required for the maximal expression of ZEB1 mRNA. Unexpectedly, the expression of Snail1 and Twist shows a mutual dependence although to a different extent; whereas Twist depletion retards Snail1 up-regulation by TGF-ß, Snail1 is necessary for the rapid increase in Twist protein and later up-regulation of Twist1 mRNA induced by the cytokine. Besides this effect on Twist, Snail1 also induces the nuclear translocation of Ets1, another factor required for Zeb1 expression. Both Twist and Ets1 bind to the ZEB1 promoter although to different elements: whereas Ets1 interacts with the proximal promoter, Twist does it with a 700-bp sequence upstream of the transcription start site. These results indicate that Snail1 controls Zeb1 expression at multiple levels and acts cooperatively with Twist in the ZEB1 gene transcription induction.


Assuntos
Transição Epitelial-Mesenquimal/fisiologia , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/metabolismo , Proteína 1 Relacionada a Twist/metabolismo , Animais , Células Cultivadas , Imunoprecipitação da Cromatina , Transição Epitelial-Mesenquimal/genética , Proteínas de Homeodomínio/genética , Humanos , Camundongos , Ligação Proteica/efeitos dos fármacos , Proteína Proto-Oncogênica c-ets-1/genética , Proteína Proto-Oncogênica c-ets-1/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição da Família Snail , Fatores de Transcrição/genética , Fator de Crescimento Transformador beta/farmacologia , Proteína 1 Relacionada a Twist/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco
6.
Biophys J ; 94(9): 3659-70, 2008 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-18024501

RESUMO

Analysis of infrared polarized absorbance spectra and linear dichroism spectra of reconstituted melibiose permease from Escherichia coli shows that the oriented structures correspond mainly to tilted transmembrane alpha-helices, forming an average angle of approximately 26 degrees with the membrane normal in substrate-free medium. Examination of the deconvoluted linear dichroism spectra in H(2)O and D(2)O makes apparent two populations of alpha-helices differing by their tilt angle (helix types I and II). Moreover, the average helical tilt angle significantly varies upon substrate binding: it is increased upon Na(+) binding, whereas it decreases upon subsequent melibiose binding in the presence of Na(+). In contrast, melibiose binding in the presence of H(+) causes virtually no change in the average tilt angle. The data also suggest that the two helix populations change their tilting and H/D exchange level in different ways depending on the bound substrate(s). Notably, cation binding essentially influences type I helices, whereas melibiose binding modifies the tilting of both helix populations.


Assuntos
Escherichia coli/enzimologia , Melibiose/metabolismo , Simportadores/química , Simportadores/metabolismo , Dicroísmo Circular , Medição da Troca de Deutério , Ligação Proteica , Estrutura Secundária de Proteína , Sódio/química , Sódio/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier
7.
Nucleic Acids Res ; 34(7): 2077-84, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16617148

RESUMO

The product of Snail1 gene is a transcriptional repressor of E-cadherin expression and an inductor of the epithelial-mesenchymal transition in several epithelial tumour cell lines. Transcription of Snail1 is induced when epithelial cells are forced to acquire a mesenchymal phenotype. In this work we demonstrate that Snail1 protein limits its own expression: Snail1 binds to an E-box present in its promoter (at -146 with respect to the transcription start) and represses its activity. Therefore, mutation of the E-box increases Snail1 transcription in epithelial and mesenchymal cells. Evidence of binding of ectopic or endogenous Snail1 to its own promoter was obtained by chromatin immunoprecipitation (ChIP) experiments. Studies performed expressing different forms of Snail1 under the control of its own promoter demonstrate that disruption of the regulatory loop increases the cellular levels of Snail protein. These results indicate that expression of Snail1 gene can be regulated by its product and evidence the existence of a fine-tuning feed-back mechanism of regulation of Snail1 transcription.


Assuntos
Elementos E-Box , Regulação da Expressão Gênica , Regiões Promotoras Genéticas , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Animais , Sítios de Ligação , Linhagem Celular , Regulação para Baixo , Homeostase , Humanos , Camundongos , RNA Mensageiro/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição da Família Snail , Fatores de Transcrição/metabolismo
8.
FEBS J ; 283(23): 4263-4273, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27735137

RESUMO

Methylation of histone H3 lysine 4 is linked to active transcription and can be removed by LSD1 or the JmjC domain-containing proteins by amino-oxidation or hydroxylation, respectively. Here we describe that its deamination can be catalyzed by lysyl oxidase-like 2 protein (LOXL2), presenting an unconventional chemical mechanism for H3K4 modification. Infrared spectroscopy and mass spectrometry analyses demonstrated that recombinant LOXL2 specifically deaminates trimethylated H3K4. Moreover, by regulating H3K4me3 deamination, LOXL2 activity is linked with the transcriptional control of the CDH1 gene. These results reveal the existence of further H3 modification as well as a novel mechanism for H3K4me3 demethylation. DATABASE: The GEO accession number for the data referred to this paper is GSE35600.


Assuntos
Aminoácido Oxirredutases/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Aminoácido Oxirredutases/genética , Antígenos CD , Western Blotting , Caderinas/genética , Caderinas/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Metilação , Oxirredução , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrofotometria Infravermelho
9.
Mol Cell Biol ; 36(6): 923-40, 2015 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-26711268

RESUMO

Notch activation in aortic endothelial cells (ECs) takes place at embryonic stages during cardiac valve formation and induces endothelial-to-mesenchymal transition (EndMT). Using aortic ECs, we show here that active Notch expression promotes EndMT, resulting in downregulation of vascular endothelial cadherin (VE-cadherin) and upregulation of mesenchymal genes such as those for fibronectin and Snail1/2. In these cells, transforming growth factor ß1 exacerbates Notch effects by increasing Snail1 and fibronectin activation. When Notch-downstream pathways were analyzed, we detected an increase in glycogen synthase kinase 3ß (GSK-3ß) phosphorylation and inactivation that facilitates Snail1 nuclear retention and protein stabilization. However, the total activity of Akt was downregulated. The discrepancy between Akt activity and GSK-3ß phosphorylation is explained by a Notch-induced switch in the Akt isoforms, whereby Akt1, the predominant isoform expressed in ECs, is decreased and Akt2 transcription is upregulated. Mechanistically, Akt2 induction requires the stimulation of the ß-catenin/TCF4 transcriptional complex, which activates the Akt2 promoter. Active, phosphorylated Akt2 translocates to the nucleus in Notch-expressing cells, resulting in GSK-3ß inactivation in this compartment. Akt2, but not Akt1, colocalizes in the nucleus with lamin B in the nuclear envelope. In addition to promoting GSK-3ß inactivation, Notch downregulates Forkhead box O1 (FoxO1), another Akt2 nuclear substrate. Moreover, Notch protects ECs from oxidative stress-induced apoptosis through an Akt2- and Snail1-dependent mechanism.


Assuntos
Morte Celular , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Notch/metabolismo , Fatores de Transcrição/genética , Animais , Aorta/citologia , Linhagem Celular , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Transição Epitelial-Mesenquimal , Regulação da Expressão Gênica , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Células HEK293 , Humanos , Camundongos , Estresse Oxidativo , Isoformas de Proteínas/análise , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estabilidade Proteica , Proteínas Proto-Oncogênicas c-akt/análise , Proteínas Proto-Oncogênicas c-akt/genética , Fatores de Transcrição da Família Snail , Suínos , Fatores de Transcrição/análise , Fatores de Transcrição/metabolismo , Regulação para Cima , beta Catenina/metabolismo
10.
Mol Cell Biol ; 28(5): 1528-40, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18172008

RESUMO

The product of the Snail1 gene is a transcriptional repressor required for triggering the epithelial-to-mesenchymal transition. Furthermore, ectopic expression of Snail1 in epithelial cells promotes resistance to apoptosis. In this study, we demonstrate that this resistance to gamma radiation-induced apoptosis caused by Snail1 is associated with the inhibition of PTEN phosphatase. In MDCK cells, mRNA levels of the p53 target gene PTEN are induced after gamma radiation; the transfection of Snail1 prevents this up-regulation. Decreased mRNA levels of PTEN were also detected in RWP-1 cells after the ectopic expression of this transcriptional factor. Snail1 represses and associates to the PTEN promoter as detected both by the electrophoretic mobility shift assay and chromatin immunoprecipitation experiments performed with either endogenous or ectopic Snail1. The binding of Snail1 to the PTEN promoter increases after gamma radiation, correlating with the stabilization of Snail1 protein, and prevents the association of p53 to the PTEN promoter. These results stress the critical role of Snail1 in the control of apoptosis and demonstrate the regulation of PTEN phosphatase by this transcriptional repressor.


Assuntos
Apoptose/efeitos da radiação , Raios gama , Regulação da Expressão Gênica , PTEN Fosfo-Hidrolase/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Dano ao DNA , DNA Complementar , Cães , Fase G2 , Genes Reporter , Humanos , Luciferases de Vaga-Lume/análise , Luciferases de Vaga-Lume/metabolismo , Luciferases de Renilla/análise , Luciferases de Renilla/metabolismo , Substâncias Luminescentes/metabolismo , Neoplasias Pancreáticas/patologia , Regiões Promotoras Genéticas , Inibidores da Síntese de Proteínas/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Puromicina/farmacologia , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/farmacologia , Seleção Genética , Fatores de Transcrição da Família Snail , Fatores de Tempo , Fatores de Transcrição/genética , Fatores de Transcrição/farmacologia , Transfecção
11.
Mol Cell Biol ; 28(15): 4772-81, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18519590

RESUMO

The transcriptional factor Snail1 is a repressor of E-cadherin (CDH1) gene expression essential for triggering epithelial-mesenchymal transition. Snail1 represses CDH1, directly binding its promoter and inducing the synthesis of the Zeb1 repressor. In this article, we show that repression of CDH1 by Snail1, but not by Zeb1, is dependent on the activity of Polycomb repressive complex 2 (PRC2). Embryonic stem (ES) cells null for Suz12, one of the components of PRC2, show higher levels of Cdh1 mRNA than control ES cells. In tumor cells, interference of PRC2 activity prevents the ability of Snail1 to downregulate CDH1 and partially derepresses CDH1. Chromatin immunoprecipitation assays demonstrated that Snail1 increases the binding of Suz12 to the CDH1 promoter and the trimethylation of lysine 27 in histone H3. Moreover, Snail1 interacts with Suz12 and Ezh2, as shown by coimmunoprecipitation experiments. In conclusion, these results demonstrate that Snail1 recruits PRC2 to the CDH1 promoter and requires the activity of this complex to repress E-cadherin expression.


Assuntos
Caderinas/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Animais , Sítios de Ligação , Caderinas/genética , Linhagem Celular , Linhagem Celular Tumoral , Regulação para Baixo , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Mesoderma/citologia , Mesoderma/metabolismo , Camundongos , Complexo Repressor Polycomb 2 , Proteínas do Grupo Polycomb , Regiões Promotoras Genéticas/genética , Ligação Proteica , Estrutura Terciária de Proteína , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição da Família Snail , Fatores de Transcrição/química
12.
J Biol Chem ; 277(5): 3380-7, 2002 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-11729178

RESUMO

The accessibility of Escherichia coli melibiose permease to aqueous solvent was studied following hydrogen-deuterium exchange kinetics monitored by attenuated total reflection-Fourier transform infrared spectroscopy under four distinct conditions where MelB forms different complexes with its substrates (H(+), Na(+), melibiose). Analysis of the amide II band upon (2)H(2)O exposure discloses a significant sugar protection of the protein against aqueous solvent, resulting in an 8% less exchange of the corresponding H(+)*melibiose*MelB complex compared with the protein in the absence of sugar. Investigation of the amide I exchange reveals clear substrate effects on beta-sheet accessibility, with the complex H(+)*melibiose*MelB being the most protected state against exchange, followed by Na(+)*melibiose*MelB. Although of smaller magnitude, similar changes in alpha-helices plus non-ordered structures are detected. Finally, no differences are observed when analyzing reverse turn structures. The results suggest that sugar binding induces a remarkable compactness of the carrier's structure, affecting mainly beta-sheet domains of the transporter, which, according to secondary structure predictions, may include cytoplasmic loops 4-5 and 10-11. A possible catalytic role of these two loops in the functioning of MelB is hypothesized.


Assuntos
Escherichia coli/enzimologia , Simportadores/metabolismo , Amidas/metabolismo , Sítios de Ligação , Clonagem Molecular , Escherichia coli/genética , Concentração de Íons de Hidrogênio , Cinética , Lipossomos/metabolismo , Estrutura Secundária de Proteína , Proteolipídeos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Simportadores/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA