Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Neuroimage ; 283: 120412, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37858907

RESUMO

BACKGROUND: Recent advances in data-driven computational approaches have been helpful in devising tools to objectively diagnose psychiatric disorders. However, current machine learning studies limited to small homogeneous samples, different methodologies, and different imaging collection protocols, limit the ability to directly compare and generalize their results. Here we aimed to classify individuals with PTSD versus controls and assess the generalizability using a large heterogeneous brain datasets from the ENIGMA-PGC PTSD Working group. METHODS: We analyzed brain MRI data from 3,477 structural-MRI; 2,495 resting state-fMRI; and 1,952 diffusion-MRI. First, we identified the brain features that best distinguish individuals with PTSD from controls using traditional machine learning methods. Second, we assessed the utility of the denoising variational autoencoder (DVAE) and evaluated its classification performance. Third, we assessed the generalizability and reproducibility of both models using leave-one-site-out cross-validation procedure for each modality. RESULTS: We found lower performance in classifying PTSD vs. controls with data from over 20 sites (60 % test AUC for s-MRI, 59 % for rs-fMRI and 56 % for d-MRI), as compared to other studies run on single-site data. The performance increased when classifying PTSD from HC without trauma history in each modality (75 % AUC). The classification performance remained intact when applying the DVAE framework, which reduced the number of features. Finally, we found that the DVAE framework achieved better generalization to unseen datasets compared with the traditional machine learning frameworks, albeit performance was slightly above chance. CONCLUSION: These results have the potential to provide a baseline classification performance for PTSD when using large scale neuroimaging datasets. Our findings show that the control group used can heavily affect classification performance. The DVAE framework provided better generalizability for the multi-site data. This may be more significant in clinical practice since the neuroimaging-based diagnostic DVAE classification models are much less site-specific, rendering them more generalizable.


Assuntos
Transtornos de Estresse Pós-Traumáticos , Humanos , Transtornos de Estresse Pós-Traumáticos/diagnóstico por imagem , Reprodutibilidade dos Testes , Big Data , Neuroimagem , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem
2.
Hum Brain Mapp ; 43(8): 2653-2667, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35289463

RESUMO

Mild Traumatic brain injury (mTBI) is a signature wound in military personnel, and repetitive mTBI has been linked to age-related neurogenerative disorders that affect white matter (WM) in the brain. However, findings of injury to specific WM tracts have been variable and inconsistent. This may be due to the heterogeneity of mechanisms, etiology, and comorbid disorders related to mTBI. Non-negative matrix factorization (NMF) is a data-driven approach that detects covarying patterns (components) within high-dimensional data. We applied NMF to diffusion imaging data from military Veterans with and without a self-reported TBI history. NMF identified 12 independent components derived from fractional anisotropy (FA) in a large dataset (n = 1,475) gathered through the ENIGMA (Enhancing Neuroimaging Genetics through Meta-Analysis) Military Brain Injury working group. Regressions were used to examine TBI- and mTBI-related associations in NMF-derived components while adjusting for age, sex, post-traumatic stress disorder, depression, and data acquisition site/scanner. We found significantly stronger age-dependent effects of lower FA in Veterans with TBI than Veterans without in four components (q < 0.05), which are spatially unconstrained by traditionally defined WM tracts. One component, occupying the most peripheral location, exhibited significantly stronger age-dependent differences in Veterans with mTBI. We found NMF to be powerful and effective in detecting covarying patterns of FA associated with mTBI by applying standard parametric regression modeling. Our results highlight patterns of WM alteration that are differentially affected by TBI and mTBI in younger compared to older military Veterans.


Assuntos
Concussão Encefálica , Lesões Encefálicas Traumáticas , Lesões Encefálicas , Militares , Transtornos de Estresse Pós-Traumáticos , Veteranos , Substância Branca , Encéfalo/diagnóstico por imagem , Concussão Encefálica/diagnóstico por imagem , Lesões Encefálicas/etiologia , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Humanos , Análise Multivariada , Transtornos de Estresse Pós-Traumáticos/complicações , Substância Branca/diagnóstico por imagem
3.
Mol Psychiatry ; 26(8): 4315-4330, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-31857689

RESUMO

A growing number of studies have examined alterations in white matter organization in people with posttraumatic stress disorder (PTSD) using diffusion MRI (dMRI), but the results have been mixed which may be partially due to relatively small sample sizes among studies. Altered structural connectivity may be both a neurobiological vulnerability for, and a result of, PTSD. In an effort to find reliable effects, we present a multi-cohort analysis of dMRI metrics across 3047 individuals from 28 cohorts currently participating in the PGC-ENIGMA PTSD working group (a joint partnership between the Psychiatric Genomics Consortium and the Enhancing NeuroImaging Genetics through Meta-Analysis consortium). Comparing regional white matter metrics across the full brain in 1426 individuals with PTSD and 1621 controls (2174 males/873 females) between ages 18-83, 92% of whom were trauma-exposed, we report associations between PTSD and disrupted white matter organization measured by lower fractional anisotropy (FA) in the tapetum region of the corpus callosum (Cohen's d = -0.11, p = 0.0055). The tapetum connects the left and right hippocampus, for which structure and function have been consistently implicated in PTSD. Results were consistent even after accounting for the effects of multiple potentially confounding variables: childhood trauma exposure, comorbid depression, history of traumatic brain injury, current alcohol abuse or dependence, and current use of psychotropic medications. Our results show that PTSD may be associated with alterations in the broader hippocampal network.


Assuntos
Transtornos de Estresse Pós-Traumáticos , Substância Branca , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Anisotropia , Encéfalo/diagnóstico por imagem , Imagem de Tensor de Difusão , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Transtornos de Estresse Pós-Traumáticos/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Adulto Jovem
4.
Mol Psychiatry ; 26(8): 4331-4343, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33288872

RESUMO

Studies of posttraumatic stress disorder (PTSD) report volume abnormalities in multiple regions of the cerebral cortex. However, findings for many regions, particularly regions outside commonly studied emotion-related prefrontal, insular, and limbic regions, are inconsistent and tentative. Also, few studies address the possibility that PTSD abnormalities may be confounded by comorbid depression. A mega-analysis investigating all cortical regions in a large sample of PTSD and control subjects can potentially provide new insight into these issues. Given this perspective, our group aggregated regional volumes data of 68 cortical regions across both hemispheres from 1379 PTSD patients to 2192 controls without PTSD after data were processed by 32 international laboratories using ENIGMA standardized procedures. We examined whether regional cortical volumes were different in PTSD vs. controls, were associated with posttraumatic stress symptom (PTSS) severity, or were affected by comorbid depression. Volumes of left and right lateral orbitofrontal gyri (LOFG), left superior temporal gyrus, and right insular, lingual and superior parietal gyri were significantly smaller, on average, in PTSD patients than controls (standardized coefficients = -0.111 to -0.068, FDR corrected P values < 0.039) and were significantly negatively correlated with PTSS severity. After adjusting for depression symptoms, the PTSD findings in left and right LOFG remained significant. These findings indicate that cortical volumes in PTSD patients are smaller in prefrontal regulatory regions, as well as in broader emotion and sensory processing cortical regions.


Assuntos
Transtornos de Estresse Pós-Traumáticos , Córtex Cerebral/diagnóstico por imagem , Genômica , Humanos , Imageamento por Ressonância Magnética , Transtornos de Estresse Pós-Traumáticos/diagnóstico por imagem , Transtornos de Estresse Pós-Traumáticos/genética , Lobo Temporal
5.
Brain Inj ; 32(10): 1245-1255, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29985658

RESUMO

PRIMARY OBJECTIVE: To investigate differences in longitudinal trajectories of ventricle-brain ratio (VBR), a general measure of brain atrophy, between Veterans with and without history of mild traumatic brain injury (mTBI). RESEARCH DESIGN: Structural magnetic resonance imaging (MRI) was used to calculate VBR in 70 Veterans with a history of mTBI and 34 Veterans without such history at two time points approximately 3 and 8 years after a combat deployment. MAIN OUTCOMES AND RESULTS: Both groups demonstrated a quadratic relationship between VBR and age that is consistent with normal developmental trajectories. Veterans with history of mTBI had larger total brain volume, but no interaction between mTBI and age was observed for brain volume, ventricular volume, or VBR. CONCLUSIONS: In our longitudinal sample of deployed Veterans, mTBI was not associated with gross brain atrophy as reflected by abnormally high VBR or abnormal increases in VBR over time.


Assuntos
Concussão Encefálica/complicações , Encéfalo/diagnóstico por imagem , Ventrículos Cerebrais/diagnóstico por imagem , Adulto , Campanha Afegã de 2001- , Fatores Etários , Idoso , Concussão Encefálica/diagnóstico por imagem , Transtornos Cognitivos/diagnóstico por imagem , Transtornos Cognitivos/etiologia , Estudos de Coortes , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Guerra do Iraque 2003-2011 , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Militares , Modelos Estatísticos , Testes Neuropsicológicos , Fatores de Tempo
6.
Brain Inj ; 30(12): 1491-1500, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27834537

RESUMO

PRIMARY OBJECTIVE: Based on high comorbidity between mild traumatic brain injury (mTBI) and post-traumatic stress disorder (PTSD) among deployed military service members, this study tested the hypothesis that the presence of PTSD disrupts the association between mTBI and lower white matter integrity identified in non-military samples. Research design/Methods and procedures: In a sample of 124 recent veterans with a range of mTBI and PTSD history, diffusion tensor imaging (DTI) metrics of white matter integrity in 20 regions were compared using multiple mTBI and PTSD contrasts. MAIN OUTCOMES AND RESULTS: Civilian mTBI was associated with lower global anisotropy, higher global diffusivity and higher diffusivity in 17 of 20 regions. No main effects of deployment mTBI were observed, but an interaction between deployment mTBI and lifetime PTSD on FA was observed globally and in 10 regions. Impact and blast mTBI demonstrated similar but weaker effects to those of civilian and deployment mTBI, respectively, demonstrating the context of mTBI is more relevant to white matter integrity than mechanism of injury. CONCLUSIONS: Overall, a main effect of civilian mTBI indicates long-term disruptions to white matter are likely present, while the interaction between deployment mTBI and PTSD indicates that a history of PTSD alters this relationship.


Assuntos
Concussão Encefálica/complicações , Concussão Encefálica/epidemiologia , Córtex Cerebral/patologia , Leucoencefalopatias/etiologia , Transtornos de Estresse Pós-Traumáticos/complicações , Transtornos de Estresse Pós-Traumáticos/epidemiologia , Adulto , Campanha Afegã de 2001- , Anisotropia , Concussão Encefálica/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem , Imagem de Tensor de Difusão , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Guerra do Iraque 2003-2011 , Leucoencefalopatias/diagnóstico por imagem , Masculino , Testes Neuropsicológicos , Escalas de Graduação Psiquiátrica , Índices de Gravidade do Trauma , Estados Unidos/epidemiologia , Veteranos/psicologia
7.
Hum Brain Mapp ; 36(3): 1053-64, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25387950

RESUMO

Mild traumatic brain injury (mTBI) and post-traumatic stress disorder (PTSD) are common among recent military veterans and involve substantial symptom overlap, making clinical distinction and effective intervention difficult. Emerging evidence of cerebral white matter abnormalities associated with mTBI may provide a biological measure to inform diagnosis and treatment, but the potentially confounding effects between PTSD and mTBI have largely gone unexamined. We collected diffusion imaging data from 133 recently-deployed American service members who developed PTSD and/or sustained mTBI, or had neither condition. Effects of PTSD and mTBI on traditional tensor-based measures of cerebral white matter integrity (fractional anisotropy [FA] and mean diffusivity [MD]) were compared in anatomical regions of interest and individual voxels throughout the brain. Generalized FA (GFA), which allows for multiple fiber orientations per voxel, was also included to improve sensitivity in white matter areas containing crossing or diverging axon bundles. PTSD was consistently associated with high GFA in select brain regions, greater likelihood of regions and voxels with abnormally low MD, and a greater number of voxels with abnormally high FA, while mTBI was associated with fewer high MD regions. Overall, PTSD was associated with more restricted diffusion (low MD) and greater anisotropy (high GFA) in regions of crossing/diverging fibers poorly characterized by a single tensor (FA), suggesting that interstitial fibers may be involved. Contrary to earlier results in a sample without PTSD, mTBI was not associated with anisotropy abnormalities, perhaps indicating the cooccurrence of PTSD and mTBI requires special consideration with regard to structural brain connectivity.


Assuntos
Traumatismos por Explosões/patologia , Lesões Encefálicas/patologia , Fibras Nervosas Mielinizadas/patologia , Transtornos de Estresse Pós-Traumáticos/patologia , Veteranos , Substância Branca/patologia , Adulto , Campanha Afegã de 2001- , Anisotropia , Traumatismos por Explosões/complicações , Lesões Encefálicas/etiologia , Imagem de Difusão por Ressonância Magnética , Feminino , Humanos , Guerra do Iraque 2003-2011 , Masculino , Pessoa de Meia-Idade , Transtornos de Estresse Pós-Traumáticos/etiologia , Adulto Jovem
8.
Brain Imaging Behav ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448704

RESUMO

Blast-related mild traumatic brain injury (BR mTBI) is a critical research area in recent combat veterans due to increased prevalence of survived blasts. Post-BR mTBI outcomes are highly heterogeneous and defining neurological differences may help in discrimination and prediction of cognitive outcomes. This study investigates whether white matter integrity, measured with diffusion tensor imaging (DTI), could influence how remote BR mTBI history is associated with executive control. The sample included 151 Veterans from the Minneapolis Veterans Affairs Medical Center who were administered a clinical/TBI assessment, neuropsychological battery, and DTI scan as part of a larger battery. From previous research, six white matter tracts were identified as having a putative relationship with blast severity: the cingulum, hippocampal cingulum, corticospinal tract, inferior fronto-occipital fasciculus, superior longitudinal fasciculus and uncinate. Fractional anisotropy (FA) of the a priori selected white matter tracts and report of BR mTBI were used as predictors of Trail-Making Test B (TMT-B) performance in a multiple linear regression model. Statistical analysis revealed that FA of the hippocampal cingulum moderated the association between report of at least one BR mTBI and poorer TMT-B performance (p < 0.008), such that lower FA value was associated with worse TMT-B outcomes in individuals with BR mTBI. No significant moderation existed for other selected tracts, and the effect was not observed with predictors aside from history of BR mTBI. Investigation at the individual-tract level may lead to a deeper understanding of neurological differences between blast-related and non-blast related injuries.

9.
Mil Med ; 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38401164

RESUMO

INTRODUCTION: MRI represents one of the clinical tools at the forefront of research efforts aimed at identifying diagnostic and prognostic biomarkers following traumatic brain injury (TBI). Both volumetric and diffusion MRI findings in mild TBI (mTBI) are mixed, making the findings difficult to interpret. As such, additional research is needed to continue to elucidate the relationship between the clinical features of mTBI and quantitative MRI measurements. MATERIAL AND METHODS: Volumetric and diffusion imaging data in a sample of 976 veterans and service members from the Chronic Effects of Neurotrauma Consortium and now the Long-Term Impact of Military-Relevant Brain Injury Consortium observational study of the late effects of mTBI in combat with and without a history of mTBI were examined. A series of regression models with link functions appropriate for the model outcome were used to evaluate the relationships among imaging measures and clinical features of mTBI. Each model included acquisition site, participant sex, and age as covariates. Separate regression models were fit for each region of interest where said region was a predictor. RESULTS: After controlling for multiple comparisons, no significant main effect was noted for comparisons between veterans and service members with and without a history of mTBI. However, blast-related mTBI were associated with volumetric reductions of several subregions of the corpus callosum compared to non-blast-related mTBI. Several volumetric (i.e., hippocampal subfields, etc.) and diffusion (i.e., corona radiata, superior longitudinal fasciculus, etc.) MRI findings were noted to be associated with an increased number of repetitive mTBIs versus. CONCLUSIONS: In deployment-related mTBI, significant findings in this cohort were only observed when considering mTBI sub-groups (blast mechanism and total number/dose). Simply comparing healthy controls and those with a positive mTBI history is likely an oversimplification that may lead to non-significant findings, even in consortium analyses.

10.
Neurology ; 102(12): e209417, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38833650

RESUMO

BACKGROUND AND OBJECTIVES: Traumatic brain injury (TBI) is a concern for US service members and veterans (SMV), leading to heterogeneous psychological and cognitive outcomes. We sought to identify neuropsychological profiles of mild TBI (mTBI) and posttraumatic stress disorder (PTSD) among the largest SMV sample to date. METHODS: We analyzed cross-sectional baseline data from SMV with prior combat deployments enrolled in the ongoing Long-term Impact of Military-relevant Brain Injury Consortium-Chronic Effects of Neurotrauma Consortium prospective longitudinal study. Latent profile analysis identified symptom profiles using 35 indicators, including physical symptoms, depression, quality of life, sleep quality, postconcussive symptoms, and cognitive performance. It is important to note that the profiles were determined independently of mTBI and probable PTSD status. After profile identification, we examined associations between demographic variables, mTBI characteristics, and PTSD symptoms with symptom profile membership. RESULTS: The analytic sample included 1,659 SMV (mean age 41.1 ± 10.0 years; 87% male); among them 29% (n = 480) had a history of non-deployment-related mTBI only, 14% (n = 239) had deployment-related mTBI only, 36% (n = 602) had both non-deployment and deployment-related mTBI, and 30% (n = 497) met criteria for probable PTSD. A 6-profile model had the best fit, with separation on all indicators (p < 0.001). The model revealed distinct neuropsychological profiles, representing a combination of 3 self-reported functioning patterns: high (HS), moderate (MS), and low (LS), and 2 cognitive performance patterns: high (HC) and low (LC). The profiles were (1) HS/HC: n=301, 18.1%; (2) HS/LC: n=294, 17.7%; (3) MS/HC: n=359, 21.6%; (4) MS/LC: n=316, 19.0%; (5) LS/HC: n=228, 13.7%; and (6) LS/LC: n=161, 9.7%. SMV with deployment-related mTBI tended to be grouped into lower functioning profiles and were more likely to meet criteria for probable PTSD. Conversely, SMV with no mTBI exposure or non-deployment-related mTBI were clustered in higher functioning profiles and had a lower likelihood of meeting criteria for probable PTSD. DISCUSSION: Findings suggest varied symptom and functional profiles in SMV, influenced by injury context and probable PTSD comorbidity. Despite diagnostic challenges, comprehensive assessment of functioning and cognition can detect subtle differences related to mTBI and PTSD, revealing distinct neuropsychological profiles. Prioritizing early treatment based on these profiles may improve prognostication and support efficient recovery.


Assuntos
Concussão Encefálica , Militares , Testes Neuropsicológicos , Transtornos de Estresse Pós-Traumáticos , Humanos , Masculino , Adulto , Feminino , Transtornos de Estresse Pós-Traumáticos/epidemiologia , Transtornos de Estresse Pós-Traumáticos/psicologia , Transtornos de Estresse Pós-Traumáticos/etiologia , Concussão Encefálica/psicologia , Concussão Encefálica/complicações , Concussão Encefálica/epidemiologia , Estudos Transversais , Pessoa de Meia-Idade , Militares/psicologia , Estudos Longitudinais , Veteranos/psicologia , Estudos Prospectivos , Destacamento Militar/psicologia , Síndrome Pós-Concussão/psicologia , Síndrome Pós-Concussão/epidemiologia , Qualidade de Vida
11.
Neuropsychopharmacology ; 49(3): 609-619, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38017161

RESUMO

Posttraumatic stress disorder (PTSD) is associated with lower cortical thickness (CT) in prefrontal, cingulate, and insular cortices in diverse trauma-affected samples. However, some studies have failed to detect differences between PTSD patients and healthy controls or reported that PTSD is associated with greater CT. Using data-driven dimensionality reduction, we sought to conduct a well-powered study to identify vulnerable networks without regard to neuroanatomic boundaries. Moreover, this approach enabled us to avoid the excessive burden of multiple comparison correction that plagues vertex-wise methods. We derived structural covariance networks (SCNs) by applying non-negative matrix factorization (NMF) to CT data from 961 PTSD patients and 1124 trauma-exposed controls without PTSD. We used regression analyses to investigate associations between CT within SCNs and PTSD diagnosis (with and without accounting for the potential confounding effect of trauma type) and symptom severity in the full sample. We performed additional regression analyses in subsets of the data to examine associations between SCNs and comorbid depression, childhood trauma severity, and alcohol abuse. NMF identified 20 unbiased SCNs, which aligned closely with functionally defined brain networks. PTSD diagnosis was most strongly associated with diminished CT in SCNs that encompassed the bilateral superior frontal cortex, motor cortex, insular cortex, orbitofrontal cortex, medial occipital cortex, anterior cingulate cortex, and posterior cingulate cortex. CT in these networks was significantly negatively correlated with PTSD symptom severity. Collectively, these findings suggest that PTSD diagnosis is associated with widespread reductions in CT, particularly within prefrontal regulatory regions and broader emotion and sensory processing cortical regions.


Assuntos
Transtornos de Estresse Pós-Traumáticos , Humanos , Transtornos de Estresse Pós-Traumáticos/psicologia , Imageamento por Ressonância Magnética , Encéfalo , Emoções , Córtex Pré-Frontal
12.
Biol Psychiatry Glob Open Sci ; 4(1): 299-307, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38298781

RESUMO

Background: Intrusive traumatic re-experiencing domain (ITRED) was recently introduced as a novel perspective on posttraumatic psychopathology, proposing to focus research of posttraumatic stress disorder (PTSD) on the unique symptoms of intrusive and involuntary re-experiencing of the trauma, namely, intrusive memories, nightmares, and flashbacks. The aim of the present study was to explore ITRED from a neural network connectivity perspective. Methods: Data were collected from 9 sites taking part in the ENIGMA (Enhancing Neuro Imaging Genetics through Meta Analysis) PTSD Consortium (n= 584) and included itemized PTSD symptom scores and resting-state functional connectivity (rsFC) data. We assessed the utility of rsFC in classifying PTSD, ITRED-only (no PTSD diagnosis), and trauma-exposed (TE)-only (no PTSD or ITRED) groups using a machine learning approach, examining well-known networks implicated in PTSD. A random forest classification model was built on a training set using cross-validation, and the averaged cross-validation model performance for classification was evaluated using the area under the curve. The model was tested using a fully independent portion of the data (test dataset), and the test area under the curve was evaluated. Results: rsFC signatures differentiated TE-only participants from PTSD and ITRED-only participants at about 60% accuracy. Conversely, rsFC signatures did not differentiate PTSD from ITRED-only individuals (45% accuracy). Common features differentiating TE-only participants from PTSD and ITRED-only participants mainly involved default mode network-related pathways. Some unique features, such as connectivity within the frontoparietal network, differentiated TE-only participants from one group (PTSD or ITRED-only) but to a lesser extent from the other group. Conclusions: Neural network connectivity supports ITRED as a novel neurobiologically based approach to classifying posttrauma psychopathology.

13.
J Clin Sleep Med ; 19(2): 361-369, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36305584

RESUMO

STUDY OBJECTIVES: Persistent nightmares are common among individuals exposed to trauma and are especially prevalent among veterans. While behavioral and pharmacological interventions are available, they have demonstrated limited efficacy. Innovations in wearable technology provide a potential avenue to match or exceed these existing treatments by directly targeting nightmare physiology. METHODS: We conducted a randomized, sham-controlled study to determine the efficacy of a novel wearable device-based application in 65 veterans with impaired sleep secondary to trauma-related nightmares. Changes in measures of sleep quality, posttraumatic stress disorder/depression symptoms, and quality of life across the 30-day trial were compared between the Active and Sham systems. RESULTS: Both groups demonstrated statistically significant within-person improvement on all measures. While the Active system was generally associated with stronger magnitude of improvement, none of the comparisons of individual measures across conditions reached statistical significance. However, a post-hoc analysis excluding participants with low frequency of usage demonstrated significantly better improvement in perceived sleep quality with the Active device than Sham. CONCLUSIONS: Overall, these results provide preliminary evidence that a wearable device may improve self-reported sleep quality for veterans reporting frequent trauma-related nightmares, especially in compliant users. CLINICAL TRIAL REGISTRATION: Registry: ClinicalTrials.gov; Name: Traumatic Nightmares Treated by NightWare (To Arouse Not Awaken) (TNT/NW); URL: https://www.clinicaltrials.gov/ct2/show/NCT04040387; Identifier: NCT04040387. CITATION: Davenport ND, Werner JK. A randomized sham-controlled clinical trial of a novel wearable intervention for trauma-related nightmares in military veterans. J Clin Sleep Med. 2023;19(2):361-369.


Assuntos
Transtornos de Estresse Pós-Traumáticos , Veteranos , Humanos , Sonhos , Qualidade de Vida , Transtornos de Estresse Pós-Traumáticos/terapia , Transtornos de Estresse Pós-Traumáticos/tratamento farmacológico , Sono
14.
J Psychopathol Clin Sci ; 132(1): 26-37, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36455008

RESUMO

There is a public health need to understand mental health vulnerabilities to COVID-19 pandemic-related stressors and promote resilience among high-risk populations with preexisting psychiatric conditions. Recent cross-sectional studies suggest increases in mental health distress (e.g., depression and anxiety) during the pandemic. The present study expands upon these emerging findings using longitudinal latent modeling and hierarchical linear regressions. Consistent with the developmental psychopathology literature on resilience, we distinguished between promotive or risk (i.e., main effect), and protective or vulnerability (i.e., moderation) effects on mental health during the pandemic. At a large medical center, 398 veterans receiving outpatient mental health care provided prepandemic (Time 1) and during pandemic (Time 2) assessments of mental and physical health-related distress. Additional Time 2 questionnaires assessed pandemic-related stressors and positive behavioral adaptations in the summer of 2020. As expected, total stressor scores predicted longitudinal worsening of self-reported mental (ß = -.205) and physical health (ß = -.217). Positive behavioral adaptations enacted during the pandemic moderated and protected against stressor effects on mental health (ß = .160). In addition, the presence of substance use disorders moderated and conferred vulnerability to stressor effects on physical health (ß = -.158). Thus, higher COVID-19 pandemic stressor exposure may have exacerbated mental and physical health distress among veterans with common forms of psychopathology. Nevertheless, behavioral activation, purposeful maintenance of social connections, and focused treatment for substance misuse may be important intervention targets for reducing the longitudinal impact of pandemic stressors and enhancing resilience among people with mental illness. (PsycInfo Database Record (c) 2023 APA, all rights reserved).


Assuntos
COVID-19 , Veteranos , Humanos , Saúde Mental , Pandemias , Pacientes Ambulatoriais
15.
medRxiv ; 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37502945

RESUMO

Background: Military service provides a unique opportunity for studying resilience, a dynamic process of successful adaptation (i.e., doing well in terms of functioning and symptoms) in response to significant adversity. Despite tremendous interest in positive adaptation among military service members, little is known about the processes underlying their resilience. Understanding neurobiological, cognitive, and social mechanisms underlying adaptive functioning following military stressor exposure is essential to enhance the resilience of military service members. Objectives: The primary objective of the Advancing Research on Mechanisms of Resilience (ARMOR) longitudinal study is to characterize trajectories of positive adaptation among young military recruits in response to Basic Combat Training (BCT), a well-defined, uniform, 10-week period of intense stress (Aim 1) and identify promotive and protective processes contributing to individual variations in resilience (Aim 2). The secondary objective is to investigate pathways by which neurobehavioral markers of self-regulation assessed by electroencephalography (EEG) and magnetic resonance imaging (MRI) contribute to adaptive trajectories (Aim 3). Methods: ARMOR is an ongoing, prospective longitudinal cohort study of young military recruits who recently joined the National Guard but have not yet shipped for BCT. Participants (N=1,201) are assessed at five timepoints over the initial 2+ years of military service beginning before BCT (baseline) and followed up at 2 weeks, 6, 12, and 18 months post-BCT. At each time point, participants complete online questionnaires assessing vulnerability and protective factors, mental health and social-emotional functioning, and, at Time 0 only, a battery of neurocognitive tests. A subset of participants also complete structured diagnostic interviews, additional self-report measures, and perform neurobehavioral tasks before and after BCT during EEG sessions, and, at pre-BCT only, during MRI sessions. Results: Study enrollment began April 14, 2019 and ended in October 16, 2021. A total of 1,201 participants are enrolled in the study (68.9% male; mean age = 18.9, SD = 3.0). Follow-up data-collection is ongoing and projected to continue through March 2024. We will disseminate findings through conferences, webinars, open access publications, and communications with participants and stakeholders. Conclusions: Results are expected to elucidate how young military recruits adapt to military stressors during the initial years of military service. Understanding positive adaptation of military recruits in the face of BCT has implications for developing prevention and intervention strategies to enhance resilience of military trainees and potentially other young people facing significant life challenges.

16.
JMIR Res Protoc ; 12: e51235, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37792432

RESUMO

BACKGROUND: Military services provide a unique opportunity for studying resilience, a dynamic process of successful adaptation (ie, doing well in terms of functioning and symptoms) in response to significant adversity. Despite the tremendous interest in positive adaptation among military service members, little is known about the processes underlying their resilience. Understanding the neurobiological, cognitive, and social mechanisms underlying adaptive functioning following military stressor exposure is essential for enhancing the resilience of military service members. OBJECTIVE: The primary objective of the Advancing Research on Mechanisms of Resilience (ARMOR) longitudinal study is to characterize the trajectories of positive adaptation among young military recruits in response to basic combat training (BCT), a well-defined, uniform, and 10-week period of intense stress (aim 1), and identify promotive and protective processes contributing to individual variations in resilience (aim 2). The secondary objective is to investigate the pathways by which neurobehavioral markers of self-regulation assessed using electroencephalography and magnetic resonance imaging contribute to adaptive trajectories (aim 3). METHODS: ARMOR is an ongoing, prospective longitudinal cohort study of young military recruits who recently joined the National Guard but have not yet shipped out for BCT. Participants (N=1201) are assessed at 5 time points over the initial >2 years of military service beginning before BCT (baseline) and followed up at 2 weeks and 6, 12, and 18 months after BCT. Participants complete web-based questionnaires assessing vulnerability and protective factors, mental health, and socioemotional functioning at each time point and a battery of neurocognitive tests at time 0. A subset of participants also complete structured diagnostic interviews and additional self-report measures and perform neurobehavioral tasks before and after BCT during electroencephalography sessions and before BCT only during magnetic resonance imaging sessions. RESULTS: This UG3/UH3 project was initially funded in August 2017, with the UG3 pilot work completed at the end of 2018. The UH3 phase of the project was funded in March 2019. Study enrollment for the UH3 phase began on April 14, 2019, and ended on October 16, 2021. A total of 1201 participants are enrolled in the study. Follow-up data collection for the UH3 phase is ongoing and projected to continue through February 2024. We will disseminate the findings through conferences, webinars, open access publications, and communications with participants and stakeholders. CONCLUSIONS: The ARMOR study provides a rich data set to identify the predictors and mechanisms of resilient and nonresilient outcomes in the context of military stressors, which are intended to empirically inform the development of prevention and intervention strategies to enhance the resilience of military trainees and potentially other young people facing significant life challenges. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/51235.

17.
Neuroimage ; 59(3): 2017-24, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22040736

RESUMO

Mild traumatic brain injury (mTBI) due to explosive blast is common among military service members and often associated with long term psychological and cognitive disruptions. Little is known about the neurological effects of blast-related mTBI and whether they differ from those of civilian, non-blast mTBI. Given that brain damage from blasts may be diffuse and heterogeneous, we tested the hypothesis that blast mTBI is associated with subtle white matter disruptions in the brain that are spatially inconsistent across individuals. We used diffusion tensor imaging to examine white matter integrity, as quantified by fractional anisotropy (FA), in a group of American military service members with (n=25) or without (n=33) blast-related mTBI who had been deployed as part of Operation Iraqi Freedom or Operation Enduring Freedom. History of civilian non-blast mTBI was equally common across groups, which enabled testing of both blast and non-blast mTBI effects on measures sensitive to (1) concentrated, spatially consistent (average FA within a region of interest [ROI]), (2) concentrated, spatially variable (number of ROIs with low average FA), and (3) diffuse (number of voxels with low FA) disruptions of white matter integrity. Blast mTBI was associated with a diffuse, global pattern of lower white matter integrity, and this pattern was not affected by previous civilian mTBI. Neither type of mTBI had an effect on the measures sensitive to more concentrated and spatially consistent white matter disruptions. Additionally, individuals with more than one blast mTBI tended to have a larger number of low FA voxels than individuals with a single blast injury. These results indicate that blast mTBI is associated with disrupted integrity of several white matter tracts, and that these disruptions are diluted by averaging across the large number of voxels within an ROI. The reported pattern of effects supports the conclusion that the neurological effects of blast mTBI are diffuse, widespread, and spatially variable.


Assuntos
Traumatismos por Explosões/patologia , Lesões Encefálicas/patologia , Encéfalo/patologia , Adulto , Manual Diagnóstico e Estatístico de Transtornos Mentais , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Militares , Vias Neurais/patologia , Testes Neuropsicológicos , Transtornos de Estresse Pós-Traumáticos/patologia , Transtornos de Estresse Pós-Traumáticos/psicologia , Inconsciência/complicações , Inconsciência/patologia , Adulto Jovem
18.
Neuroimage ; 54 Suppl 1: S21-9, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20851190

RESUMO

Non-impact blast-related mild traumatic brain injury (mTBI) appears to be present in soldiers returning from deployments to Afghanistan and Iraq. Although mTBI typically results in cognitive deficits that last less than a month, there is evidence that disrupted coordination of brain activity can persist for at least several months following injury (Thatcher et al., 1989, 2001). In the present study we examined whether neural communication may be affected in soldiers months after blast-related mTBI, and whether coordination of neural function is associated with underlying white matter integrity. The investigation included an application of a new time-frequency based method for measuring electroencephalogram (EEG) phase synchronization (Aviyente et al., 2010) as well as fractional anisotropy measures of axonal tracts derived from diffusion tensor imaging (DTI). Nine soldiers who incurred a blast-related mTBI during deployments to Afghanistan or Iraq were compared with eight demographically similar control subjects. Despite an absence of cognitive deficits, the blast-related mTBI group exhibited diminished EEG phase synchrony of lateral frontal sites with contralateral frontal brain regions suggesting diminished interhemispheric coordination of brain activity as a result of blast injury. For blast injured (i.e., blast-related mTBI) soldiers we found that EEG phase synchrony was associated with the structural integrity of white matter tracts of the frontal lobe (left anterior thalamic radiations and the forceps minor including the anterior corpus callosum). Analyses revealed that diminished EEG phase synchrony was not the consequence of combat-stress symptoms (e.g., post-traumatic stress and depression) and commonly prescribed medications. Results provide evidence for poor coordination of frontal neural function after blast injury that may be the consequence of damaged anterior white matter tracts.


Assuntos
Traumatismos por Explosões/fisiopatologia , Lesões Encefálicas/fisiopatologia , Encéfalo/fisiopatologia , Militares , Vias Neurais/fisiopatologia , Adulto , Campanha Afegã de 2001- , Sincronização Cortical/fisiologia , Imagem de Tensor de Difusão , Eletroencefalografia , Humanos , Interpretação de Imagem Assistida por Computador , Guerra do Iraque 2003-2011 , Masculino , Testes Neuropsicológicos
19.
Transl Psychiatry ; 11(1): 637, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34916497

RESUMO

The volume of subcortical structures represents a reliable, quantitative, and objective phenotype that captures genetic effects, environmental effects such as trauma, and disease effects such as posttraumatic stress disorder (PTSD). Trauma and PTSD represent potent exposures that may interact with genetic markers to influence brain structure and function. Genetic variants, associated with subcortical volumes in two large normative discovery samples, were used to compute polygenic scores (PGS) for the volume of seven subcortical structures. These were applied to a target sample enriched for childhood trauma and PTSD. Subcortical volume PGS from the discovery sample were strongly associated in our trauma/PTSD enriched sample (n = 7580) with respective subcortical volumes of the hippocampus (p = 1.10 × 10-20), thalamus (p = 7.46 × 10-10), caudate (p = 1.97 × 10-18), putamen (p = 1.7 × 10-12), and nucleus accumbens (p = 1.99 × 10-7). We found a significant association between the hippocampal volume PGS and hippocampal volume in control subjects from our sample, but was absent in individuals with PTSD (GxE; (beta = -0.10, p = 0.027)). This significant GxE (PGS × PTSD) relationship persisted (p < 1 × 10-19) in four out of five threshold peaks (0.024, 0.133, 0.487, 0.730, and 0.889) used to calculate hippocampal volume PGSs. We detected similar GxE (G × ChildTrauma) relationships in the amygdala for exposure to childhood trauma (rs4702973; p = 2.16 × 10-7) or PTSD (rs10861272; p = 1.78 × 10-6) in the CHST11 gene. The hippocampus and amygdala are pivotal brain structures in mediating PTSD symptomatology. Trauma exposure and PTSD modulate the effect of polygenic markers on hippocampal volume (GxE) and the amygdala volume PGS is associated with PTSD risk, which supports the role of amygdala volume as a risk factor for PTSD.


Assuntos
Transtornos de Estresse Pós-Traumáticos , Tonsila do Cerebelo/diagnóstico por imagem , Encéfalo , Hipocampo , Humanos , Imageamento por Ressonância Magnética , Transtornos de Estresse Pós-Traumáticos/diagnóstico por imagem , Transtornos de Estresse Pós-Traumáticos/genética
20.
Psychiatry Res ; 181(3): 193-8, 2010 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-20153608

RESUMO

Schizophrenia and Attention-Deficit/Hyperactivity Disorder (ADHD) are associated with similar deficits in working memory, attention, and inhibition. Both disorders also involve abnormalities of white matter integrity, possibly reflecting neural communication disruptions. There are likely some regional white matter abnormalities that underlie the common cognitive impairment, though also some regional abnormalities unique to each disorder. We used diffusion tensor imaging (DTI) to compare white matter integrity, as indicated by fractional anisotropy (FA), in adolescents with schizophrenia (n=15) or ADHD (n=14) and healthy controls (n=26). Schizophrenia patients had uniquely low FA, relative to the other two groups, in bilateral cerebral peduncles, anterior and posterior corpus callosum, right anterior corona radiata, and right superior longitudinal fasciculus. ADHD patients had uniquely high FA in left inferior and right superior frontal regions. Both clinical groups had lower FA than controls in left posterior fornix. The two disorders generally demonstrated distinct patterns of abnormal connectivity suggesting that common cognitive and behavioral deficits derive from distinct sources, though the posterior fornix may be involved in both disorders. Schizophrenia was associated with abnormally low FA in widespread circuitry indicative of general connectivity disruptions, whereas ADHD was associated with abnormally high FA in frontal networks that may indicate impaired branching of fibers.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/patologia , Mapeamento Encefálico , Imagem de Difusão por Ressonância Magnética/métodos , Fibras Nervosas Mielinizadas/patologia , Esquizofrenia/patologia , Adolescente , Anisotropia , Encéfalo/patologia , Criança , Feminino , Humanos , Masculino , Vias Neurais/anormalidades , Vias Neurais/patologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA