Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Drugs R D ; 24(2): 285-301, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38958918

RESUMO

BACKGROUND: Pegfilgrastim-cbqv/CHS-1701 (UDENYCA®) (hereafter referred to as pegfilgrastim-cbqv) was approved in 2018 by the US Food and Drug Administration as a biosimilar for pegfilgrastim (Neulasta®) (hereafter referred to as pegfilgrastim). Both pegfilgrastim-cbqv and pegfilgrastim are conjugates of recombinant human granulocyte colony stimulating factor (r-metHuG-CSF) with a 20 kDa polyethylene glycol (PEG) indicated to decrease the incidence of infection, as manifested by febrile neutropenia, in patients receiving myelosuppressive anticancer drugs. The demonstration of analytical similarity for PEG-protein conjugates presents unique challenges since both the protein and PEG attributes must be characterized. OBJECTIVE: The current study demonstrates the analytical similarity of pegfilgrastim-cbqv and the reference product, pegfilgrastim. In addition to the physicochemical and functional characterization of the protein, the study assessed attributes specific to PEGylation including PEG size and polydispersity, site of attachment, linker composition, and PEGylation process-related variants. METHODS: The structural, functional, and stability attributes of pegfilgrastim-cbqv and pegfilgrastim were compared using state-of-the-art analytical methods. For the protein, the primary structure, disulfide structure, and secondary and tertiary structures were assessed using traditional protein characterization techniques such as mass spectrometry (MS), circular dichroism (CD), intrinsic fluorescence, and differential scanning calorimetry (DSC), as well as more advanced techniques such as two-dimensional (2D) nuclear magnetic resonance (NMR) and hydrogen deuterium exchange (HDX). For the PEG moiety, the site of attachment, occupancy, linker composition, size and polydispersity were compared using mass spectrometry (both intact and after endoprotease digestion), multiangle light scattering detection (MALS), and Edman degradation. Purity assessments included the assessment of both protein variants and PEGylation variants using chromatographic and electrophoretic analytical separation techniques. The functional similarity between pegfilgrastim-cbqv and pegfilgrastim was compared using both a cell-based bioassay and surface plasmon resonance (SPR). The degradation rates and stability profiles were compared under accelerated and stressed conditions. RESULTS: Biosimilarity was demonstrated by a thorough assessment of physiochemical and functional attributes, as well as comparative stability, of pegfilgrastim-cbqv relative to pegfilgrastim. These studies demonstrated identical primary structure and disulfide structure, highly similar secondary and tertiary structure, as well as functional similarity. The impurity profile of pegfilgrastim-cbqv was comparable to that of pegfilgrastim with only minor differences in PEGylation variants and a slight offset in the PEG molar mass. These differences were not clinically relevant. The degradation profiles were qualitatively and quantitatively similar under accelerated and stress conditions. CONCLUSION: The structural, functional, and stability data demonstrate that pegfilgrastim-cbqv is highly similar to the reference product, pegfilgrastim.


Assuntos
Medicamentos Biossimilares , Filgrastim , Polietilenoglicóis , Filgrastim/química , Polietilenoglicóis/química , Medicamentos Biossimilares/química , Humanos , Proteínas Recombinantes/química
2.
Pharm Dev Technol ; 18(4): 883-96, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-22813478

RESUMO

Eight lyophilized formulations of a IgG1 monoclonal antibody (MAb) were prepared containing increasing levels of sucrose. In addition, three of the formulations had sorbitol added at a level of 5% w/w relative to sucrose. The samples were stored for up to 4 weeks at 40°C, which is well below the Tg. Upon reconstitution, the levels of subvisible particles were measured using microflow imaging (MFI). The formulation containing no sucrose contained exceedingly high levels of subvisible particles, accounting for as much as 25% of the weight of the protein. Addition of sucrose markedly decreased the number of subvisible particles, with the maximal sucrose:protein weight ratio being 2:1 (the highest level tested). Addition of sorbitol further decreased subvisible particle levels, even for formulations where the sucrose:protein ratio was relatively high. This suggests that even small amounts of a plasticizer like sorbitol can improve the storage stability of a lyophilized antibody formulation, probably by dampening ß-relaxations within the amorphous glass.


Assuntos
Anticorpos Monoclonais/química , Excipientes/química , Imunoglobulina G/imunologia , Sacarose/química , Anticorpos Monoclonais/imunologia , Composição de Medicamentos , Estabilidade de Medicamentos , Armazenamento de Medicamentos , Liofilização , Transição de Fase , Sorbitol/química , Temperatura
3.
J Pharm Sci ; 101(1): 81-91, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21918984

RESUMO

There are many aspects of stabilization of lyophilized proteins. Of these various factors, retention of native structure, having sufficient amount of stabilizer to embed the protein within an amorphous matrix, and dampening ß-relaxations have been shown to be critical in optimizing protein stability during storage. In this study, an IgG1 was lyophilized with varying amounts of sucrose. In some formulations, a small amount of sorbitol was added as a plasticizer. The structure of the protein in dried state was monitored using infrared (IR) spectroscopy. The IR spectra indicated increasing retention of the native structure, which correlated with stability as indicated by size-exclusion chromatography as well as micro-flow imaging. Maximal stability was achieved with a 2:1 mass ratio of sucrose to protein, which is more than that would be expected based on earlier studies. Analysis of both high and low frequency bands associated with intramolecular ß-sheet structure provides additional information on the structure of antibodies in the solid state. Finally, there is a correlation between the bandwidth of the ß-sheet bands and the enthalpy of relaxation, suggesting that amide I bands can provide some indication of the degree of coupling to the sugar matrix, as well as structural heterogeneity of the protein.


Assuntos
Anticorpos Monoclonais/química , Imunoglobulina G/química , Química Farmacêutica/métodos , Cromatografia em Gel/métodos , Estabilidade de Medicamentos , Armazenamento de Medicamentos , Liofilização/métodos , Estabilidade Proteica , Estrutura Secundária de Proteína , Espectrofotometria Infravermelho/métodos , Sacarose/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA