RESUMO
OBJECTIVES: The aims of this study are to develop and validate a clinical decision support system based on demographics, prostate-specific antigen (PSA), microRNA (miRNA), and MRI for the detection of prostate cancer (PCa) and clinical significant (cs) PCa, and to assess if this system performs better compared to MRI alone. METHODS: This retrospective, multicenter, observational study included 222 patients (mean age 66, range 46-75 years) who underwent prostate MRI, miRNA (let-7a-5p and miR-103a-3p) assessment, and biopsy. Monoparametric and multiparametric models including age, PSA, miRNA, and MRI outcome were trained on 65% of the data and then validated on the remaining 35% to predict both PCa (any Gleason grade [GG]) and csPCa (GG ≥ 2 vs GG = 1/negative). Accuracy, sensitivity, specificity, positive and negative predictive value (NPV), and area under the receiver operating characteristic curve were calculated. RESULTS: MRI outcome was the best predictor in the monoparametric model for both detection of PCa, with sensitivity of 90% (95%CI 73-98%) and NPV of 93% (95%CI 82-98%), and for csPCa identification, with sensitivity of 91% (95%CI 72-99%) and NPV of 95% (95%CI 84-99%). Sensitivity and NPV of PSA + miRNA for the detection of csPCa were not statistically different from the other models including MRI alone. CONCLUSION: MRI stand-alone yielded the best prediction models for both PCa and csPCa detection in biopsy-naïve patients. The use of miRNAs let-7a-5p and miR-103a-3p did not improve classification performances compared to MRI stand-alone results. CLINICAL RELEVANCE STATEMENT: The use of miRNA (let-7a-5p and miR-103a-3p), PSA, and MRI in a clinical decision support system (CDSS) does not improve MRI stand-alone performance in the detection of PCa and csPCa. KEY POINTS: ⢠Clinical decision support systems including MRI improve the detection of both prostate cancer and clinically significant prostate cancer with respect to PSA test and/or microRNA. ⢠The use of miRNAs let-7a-5p and miR-103a-3p did not significantly improve MRI stand-alone performance. ⢠Results of this study were in line with previous works on MRI and microRNA.
Assuntos
Sistemas de Apoio a Decisões Clínicas , Imageamento por Ressonância Magnética , MicroRNAs , Antígeno Prostático Específico , Neoplasias da Próstata , Humanos , Masculino , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/genética , Pessoa de Meia-Idade , Idoso , Estudos Retrospectivos , Antígeno Prostático Específico/sangue , Imageamento por Ressonância Magnética/métodos , Sensibilidade e Especificidade , Gradação de Tumores , Valor Preditivo dos TestesRESUMO
The aim of our study was to develop and validate a machine learning algorithm to predict response of individual HER2-amplified colorectal cancer liver metastases (lmCRC) undergoing dual HER2-targeted therapy. Twenty-four radiomics features were extracted after 3D manual segmentation of 141 lmCRC on pretreatment portal CT scans of a cohort including 38 HER2-amplified patients; feature selection was then performed using genetic algorithms. lmCRC were classified as nonresponders (R-), if their largest diameter increased more than 10% at a CT scan performed after 3 months of treatment, responders (R+) otherwise. Sensitivity, specificity, negative (NPV) and positive (PPV) predictive values in correctly classifying individual lesion and overall patient response were assessed on a training dataset and then validated on a second dataset using a Gaussian naïve Bayesian classifier. Per-lesion sensitivity, specificity, NPV and PPV were 89%, 85%, 93%, 78% and 90%, 42%, 73%, 71% respectively in the testing and validation datasets. Per-patient sensitivity and specificity were 92% and 86%. Heterogeneous response was observed in 9 of 38 patients (24%). Five of nine patients were carriers of nonresponder lesions correctly classified as such by our radiomics signature, including four of seven harboring only one nonresponder lesion. The developed method has been proven effective in predicting behavior of individual metastases to targeted treatment in a cohort of HER2 amplified patients. The model accurately detects responder lesions and identifies nonresponder lesions in patients with heterogeneous response, potentially paving the way to multimodal treatment in selected patients. Further validation will be needed to confirm our findings.
Assuntos
Neoplasias Colorretais/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/secundário , Inibidores de Proteínas Quinases/uso terapêutico , Receptor ErbB-2/genética , Tomografia Computadorizada por Raios X/métodos , Idoso , Algoritmos , Neoplasias Colorretais/diagnóstico por imagem , Neoplasias Colorretais/genética , Feminino , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/genética , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Terapia de Alvo Molecular , Sensibilidade e Especificidade , Análise de Sobrevida , Resultado do TratamentoRESUMO
In recent years, researchers have explored new ways to obtain information from pathological tissues, also exploring non-invasive techniques, such as virtual biopsy (VB). VB can be defined as a test that provides promising outcomes compared to traditional biopsy by extracting quantitative information from radiological images not accessible through traditional visual inspection. Data are processed in such a way that they can be correlated with the patient's phenotypic expression, or with molecular patterns and mutations, creating a bridge between traditional radiology, pathology, genomics, and artificial intelligence (AI). Radiomics is the backbone of VB, since it allows the extraction and selection of features from radiological images, feeding them into AI models in order to derive lesions' pathological characteristics and molecular status. Presently, the output of VB provides only a gross approximation of the findings of tissue biopsy. However, in the future, with the improvement of imaging resolution and processing techniques, VB could partially substitute the classical surgical or percutaneous biopsy, with the advantage of being non-invasive, comprehensive, accounting for lesion heterogeneity, and low cost. In this review, we investigate the concept of VB in abdominal pathology, focusing on its pipeline development and potential benefits.
RESUMO
Goal: Artificial intelligence applied to medical image analysis has been extensively used to develop non-invasive diagnostic and prognostic signatures. However, these imaging biomarkers should be largely validated on multi-center datasets to prove their robustness before they can be introduced into clinical practice. The main challenge is represented by the great and unavoidable image variability which is usually addressed using different pre-processing techniques including spatial, intensity and feature normalization. The purpose of this study is to systematically summarize normalization methods and to evaluate their correlation with the radiomics model performances through meta-analyses. This review is carried out according to the PRISMA statement: 4777 papers were collected, but only 74 were included. Two meta-analyses were carried out according to two clinical aims: characterization and prediction of response. Findings of this review demonstrated that there are some commonly used normalization approaches, but not a commonly agreed pipeline that can allow to improve performance and to bridge the gap between bench and bedside.
RESUMO
The liver is one of the organs most commonly involved in metastatic disease, especially due to its unique vascularization. It's well known that liver metastases represent the most common hepatic malignant tumors. From a practical point of view, it's of utmost importance to evaluate the presence of liver metastases when staging oncologic patients, to select the best treatment possible, and finally to predict the overall prognosis. In the past few years, imaging techniques have gained a central role in identifying liver metastases, thanks to ultrasonography, contrast-enhanced computed tomography (CT), and magnetic resonance imaging (MRI). All these techniques, especially CT and MRI, can be considered the non-invasive reference standard techniques for the assessment of liver involvement by metastases. On the other hand, the liver can be affected by different focal lesions, sometimes benign, and sometimes malignant. On these bases, radiologists should face the differential diagnosis between benign and secondary lesions to correctly allocate patients to the best management. Considering the above-mentioned principles, it's extremely important to underline and refresh the broad spectrum of liver metastases features that can occur in everyday clinical practice. This review aims to summarize the most common imaging features of liver metastases, with a special focus on typical and atypical appearance, by using MRI.
Assuntos
Meios de Contraste , Neoplasias Hepáticas , Humanos , Gadolínio DTPA , Neoplasias Hepáticas/patologia , Imageamento por Ressonância Magnética/métodos , Fígado/diagnóstico por imagem , Fígado/patologiaRESUMO
The aim of the study is to present and tune a fully automatic deep learning algorithm to segment colorectal cancers (CRC) on MR images, based on a U-Net structure. It is a multicenter study, including 3 different Italian institutions, that used 4 different MRI scanners. Two of them were used for training and tuning the systems, while the other two for the validation. The implemented algorithm consists of a pre-processing step to normalize and to highlight the tumoral area, followed by the CRC segmentation using different U-net structures. Automatic masks were compared with manual segmentations performed by three experienced radiologists, one at each center. The two best performing systems (called mdl2 and mdl3), obtained a median Dice Similarity Coefficient of 0.68(mdl2) - 0.69(mdl3), precision of 0.75(md/2) - 0.71(md/3), and recall of 0.69(mdl2) - 0.73(mdl3) on the validation set. Both systems reached high detection rates, 0.98 and 0.95, respectively, on the validation set. These encouraging results, if confirmed on larger dataset, might improve the management of patients with CRC, since it can be used as a fast and precise tool for further radiomics analyses. Clinical Relevance - To provide a reliable tool able to automatically segment CRC tumors that can be used as first step in future radiomics studies aimed at predicting response to chemotherapy and personalizing treatment.
Assuntos
Aprendizado Profundo , Neoplasias Retais , Algoritmos , Humanos , Imageamento por Ressonância Magnética/métodos , Neoplasias Retais/diagnóstico por imagemRESUMO
BACKGROUND: Pathological complete response after neoadjuvant chemoradiotherapy in locally advanced rectal cancer (LARC) is achieved in 15-30% of cases. Our aim was to implement and externally validate a magnetic resonance imaging (MRI)-based radiomics pipeline to predict response to treatment and to investigate the impact of manual and automatic segmentations on the radiomics models. METHODS: Ninety-five patients with stage II/III LARC who underwent multiparametric MRI before chemoradiotherapy and surgical treatment were enrolled from three institutions. Patients were classified as responders if tumour regression grade was 1 or 2 and nonresponders otherwise. Sixty-seven patients composed the construction dataset, while 28 the external validation. Tumour volumes were manually and automatically segmented using a U-net algorithm. Three approaches for feature selection were tested and combined with four machine learning classifiers. RESULTS: Using manual segmentation, the best result reached an accuracy of 68% on the validation set, with sensitivity 60%, specificity 77%, negative predictive value (NPV) 63%, and positive predictive value (PPV) 75%. The automatic segmentation achieved an accuracy of 75% on the validation set, with sensitivity 80%, specificity 69%, and both NPV and PPV 75%. Sensitivity and NPV on the validation set were significantly higher (p = 0.047) for the automatic versus manual segmentation. CONCLUSION: Our study showed that radiomics models can pave the way to help clinicians in the prediction of tumour response to chemoradiotherapy of LARC and to personalise per-patient treatment. The results from the external validation dataset are promising for further research into radiomics approaches using both manual and automatic segmentations.
Assuntos
Neoplasias Retais , Reto , Quimiorradioterapia , Humanos , Imageamento por Ressonância Magnética/métodos , Terapia Neoadjuvante/métodos , Neoplasias Retais/diagnóstico por imagem , Neoplasias Retais/patologia , Neoplasias Retais/terapia , Reto/patologiaRESUMO
The purpose of this paper is to develop and validate a delta-radiomics score to predict the response of individual colorectal cancer liver metastases (lmCRC) to first-line FOLFOX chemotherapy. Three hundred one lmCRC were manually segmented on both CT performed at baseline and after the first cycle of first-line FOLFOX, and 107 radiomics features were computed by subtracting textural features of CT at baseline from those at timepoint 1 (TP1). LmCRC were classified as nonresponders (R-) if they showed progression of disease (PD), according to RECIST1.1, before 8 months, and as responders (R+), otherwise. After feature selection, we developed a decision tree statistical model trained using all lmCRC coming from one hospital. The final output was a delta-radiomics signature subsequently validated on an external dataset. Sensitivity, specificity, positive (PPV), and negative (NPV) predictive values in correctly classifying individual lesions were assessed on both datasets. Per-lesion sensitivity, specificity, PPV, and NPV were 99%, 94%, 95%, 99%, 85%, 92%, 90%, and 87%, respectively, in the training and validation datasets. The delta-radiomics signature was able to reliably predict R- lmCRC, which were wrongly classified by lesion RECIST as R+ at TP1, (93%, averaging training and validation set, versus 67% of RECIST). The delta-radiomics signature developed in this study can reliably predict the response of individual lmCRC to oxaliplatin-based chemotherapy. Lesions forecasted as poor or nonresponders by the signature could be further investigated, potentially paving the way to lesion-specific therapies.
RESUMO
Automatic segmentation of the prostate on Magnetic Resonance Imaging (MRI) is one of the topics on which research has focused in recent years as it is a fundamental first step in the building process of a Computer aided diagnosis (CAD) system for cancer detection. Unfortunately, MRI acquired in different centers with different scanners leads to images with different characteristics. In this work, we propose an automatic algorithm for prostate segmentation, based on a U-Net applying transfer learning method in a bi-center setting. First, T2w images with and without endorectal coil from 80 patients acquired at Center A were used as training set and internal validation set. Then, T2w images without endorectal coil from 20 patients acquired at Center B were used as external validation. The reference standard for this study was manual segmentation of the prostate gland performed by an expert operator. The results showed a Dice similarity coefficient >85% in both internal and external validation datasets.Clinical Relevance- This segmentation algorithm could be integrated into a CAD system to optimize computational effort in prostate cancer detection.
Assuntos
Aprendizado Profundo , Neoplasias da Próstata , Algoritmos , Humanos , Imageamento por Ressonância Magnética , Masculino , Próstata/diagnóstico por imagem , Neoplasias da Próstata/diagnóstico por imagemRESUMO
In the last decades, MRI was proven a useful tool for the diagnosis and characterization of Prostate Cancer (PCa). In the literature, many studies focused on characterizing PCa aggressiveness, but a few have distinguished between low-aggressive (Gleason Grade Group (GG) <=2) and high-aggressive (GG>=3) PCas based on biparametric MRI (bpMRI). In this study, 108 PCas were collected from two different centers and were divided into training, testing, and validation set. From Apparent Diffusion Coefficient (ADC) map and T2-Weighted Image (T2WI), we extracted texture features, both 3D and 2D, and we implemented three different methods of Feature Selection (FS): Minimum Redundance Maximum Relevance (MRMR), Affinity Propagation (AP), and Genetic Algorithm (GA). From the resulting subsets of predictors, we trained Support Vector Machine (SVM), Decision Tree, and Ensemble Learning classifiers on the training set, and we evaluated their prediction ability on the testing set. Then, for each FS method, we chose the best classifier, based on both training and testing performances, and we further assessed their generalization capability on the validation set. Between the three best models, a Decision Tree was trained using only two features extracted from the ADC map and selected by MRMR, achieving, on the validation set, an Area Under the ROC (AUC) equal to 81%, with sensitivity and specificity of 77% and 93%, respectively.Clinical Relevance- Our best model demonstrated to be able to distinguish low-aggressive from high-aggressive PCas with high accuracy. Potentially, this approach could help clinician to noninvasively distinguish between PCas that might need active treatment and those that could potentially benefit from active surveillance, avoiding biopsy-related complications.
Assuntos
Imageamento por Ressonância Magnética , Neoplasias da Próstata , Biópsia , Humanos , Aprendizado de Máquina , Masculino , Neoplasias da Próstata/diagnóstico por imagem , Estudos RetrospectivosRESUMO
Colorectal cancer (CRC) has the second-highest tumor incidence and is a leading cause of death by cancer. Nearly 20% of patients with CRC will have metastases (mts) at the time of diagnosis, and more than 50% of patients with CRC develop metastases during their disease. Unfortunately, only 45% of patients after a chemotherapy will respond to treatment. The aim of this study is to develop and validate a machine learning algorithm to predict response of individual liver mts, using CT scans. Understanding which mts will respond or not will help clinicians in providing a more efficient per-lesion treatment based on patient specific response and not only following a standard treatment. A group of 92 patients was enrolled from two Italian institutions. CT scans were collected, and the portal venous phase was manually segmented by an expert radiologist. Then, 75 radiomics features were extracted both from 7x7 ROIs that moved across the image and from the whole 3D mts. Feature selection was performed using a genetic algorithm. Results are presented as a comparison of the two different approaches of features extraction and different classification algorithms. Accuracy (ACC), sensitivity (SE), specificity (SP), negative and positive predictive values (NPV and PPV) were evaluated for all lesions (per-lesion analysis) and patients (per-patient analysis) in the construction and validation sets. Best results were obtained in the per-lesion analysis from the 3D approach using a Support Vector Machine as classifier. We reached on the training set an ACC of 81%, while on test set, we obtained SE of 76%, SP of 67%, PPV of 69% and NPV of 75%. On the validation set a SE of 61%, SP of 60%, PPV of 57% and NPV of 64% were reached. The promising results obtained in the validation dataset should be extended to a larger cohort of patient to further validate our method.Clinical Relevance- to develop a radiomics signatures predicting single liver mts response to therapy. A personalized mts approach is important to avoid unnecessary toxicity offering more suitable treatments and a better quality of life to oncological patients.
Assuntos
Neoplasias do Colo , Neoplasias Hepáticas , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/tratamento farmacológico , Qualidade de Vida , Tomografia Computadorizada por Raios XRESUMO
In the last years, the widespread use of the prostate-specific antigen (PSA) blood examination to triage patients who will enter the diagnostic/therapeutic path for prostate cancer (PCa) has almost halved PCa-specific mortality. As a counterpart, millions of men with clinically insignificant cancer not destined to cause death are treated, with no beneficial impact on overall survival. Therefore, there is a compelling need to develop tools that can help in stratifying patients according to their risk, to support physicians in the selection of the most appropriate treatment option for each individual patient. The aim of this study was to develop and validate on multivendor data a fully automated computer-aided diagnosis (CAD) system to detect and characterize PCas according to their aggressiveness. We propose a CAD system based on artificial intelligence algorithms that a) registers all images coming from different MRI sequences, b) provides candidates suspicious to be tumor, and c) provides an aggressiveness score of each candidate based on the results of a support vector machine classifier fed with radiomics features. The dataset was composed of 131 patients (149 tumors) from two different institutions that were divided in a training set, a narrow validation set, and an external validation set. The algorithm reached an area under the receiver operating characteristic (ROC) curve in distinguishing between low and high aggressive tumors of 0.96 and 0.81 on the training and validation sets, respectively. Moreover, when the output of the classifier was divided into three classes of risk, i.e., indolent, indeterminate, and aggressive, our method did not classify any aggressive tumor as indolent, meaning that, according to our score, all aggressive tumors would undergo treatment or further investigations. Our CAD performance is superior to that of previous studies and overcomes some of their limitations, such as the need to perform manual segmentation of the tumor or the fact that analysis is limited to single-center datasets. The results of this study are promising and could pave the way to a prediction tool for personalized decision making in patients harboring PCa.
RESUMO
While cross-sectional imaging has seen continuous progress and plays an undiscussed pivotal role in the diagnostic management and treatment planning of patients with rectal cancer, a largely unmet need remains for improved staging accuracy, assessment of treatment response and prediction of individual patient outcome. Moreover, the increasing availability of target therapies has called for developing reliable diagnostic tools for identifying potential responders and optimizing overall treatment strategy on a personalized basis. Radiomics has emerged as a promising, still fully evolving research topic, which could harness the power of modern computer technology to generate quantitative information from imaging datasets based on advanced data-driven biomathematical models, potentially providing an added value to conventional imaging for improved patient management. The present study aimed to illustrate the contribution that current radiomics methods applied to magnetic resonance imaging can offer to managing patients with rectal cancer.
RESUMO
Liver metastases (mts) from colorectal cancer (CRC) can have different responses to chemotherapy in the same patient. The aim of this study is to develop and validate a machine learning algorithm to predict response of individual liver mts. 22 radiomic features (RF) were computed on pretreatment portal CT scans following a manual segmentation of mts. RFs were extracted from 7x7 Region of Interests (ROIs) that moved across the image by step of 2 pixels. Liver mts were classified as non-responder (R-) if their largest diameter increased more than 3 mm after 3 months of treatment and responder (R+), otherwise. Features selection (FS) was performed by a genetic algorithm and classification by a Support Vector Machine (SVM) classifier. Sensitivity, specificity, negative (NPV) and positive (PPV) predictive values were evaluated for all lesions in the training and validation sets, separately. On the training set, we obtained sensitivity of 86%, specificity of 67%, PPV of 89% and NPV of 61%, while, on the validation set, we reached a sensitivity of 73%, specificity of 47%, PPV of 64% and NPV of 57%. Specificity was biased by the low number of R- lesions on the validation set. The promising results obtained in the validation dataset should be extended to a larger cohort of patient to further validate our method.Clinical Relevance- to personalize treatment of patients with metastastic colorectal cancer, based on the likelihood of response to chemotherapy of each liver metastasis.
Assuntos
Neoplasias Colorretais , Neoplasias Hepáticas , Neoplasias Colorretais/diagnóstico por imagem , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Aprendizado de Máquina , Sensibilidade e Especificidade , Tomografia Computadorizada por Raios XRESUMO
The aim of the study is to present a new Convolutional Neural Network (CNN) based system for the automatic segmentation of the colorectal cancer. The algorithm implemented consists of several steps: a pre-processing to normalize and highlights the tumoral area, the classification based on CNNs, and a post-processing aimed at reducing false positive elements. The classification is performed using three CNNs: each of them classifies the same regions of interest acquired from three different MR sequences. The final segmentation mask is obtained by a majority voting. Performances were evaluated using a semi-automatic segmentation revised by an experienced radiologist as reference standard. The system obtained Dice Similarity Coefficient (DSC) of 0.60, Precision (Pr) of 0.76 and Recall (Re) of 0.55 on the testing set. After applying the leave-one-out validation, we obtained a median DSC=0.58, Pr=0.74, Re=0.54. The promising results obtained by this system, if validated on a larger dataset, could strongly improve personalized medicine.
Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Neoplasias Colorretais/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Redes Neurais de ComputaçãoRESUMO
The aim of this multicentric study is an inter-center benchmarking, to assess how different set tools applied to the same radiomics workflow affected the radiomics features (RFs) values. This topic is of key importance to start collaboration between different centers and to bring radiomic studies from benchmark to bedside. A per-lesion analysis was performed on 56 metastases (mts) selected from 14 patients. A single radiologist performed the segmentation of all mts, and RFs were extracted from the same segmentation of each mts, using two different software and file formats. Potential sources of discrepancies were evaluated. The intraclass correlation coefficient was used to describe how strongly the same radiomic measurements calculated in the two different centers resemble each other. Moreover, means of the relative changes of each RF were calculated, compared and gradually reduced. We showed that, after matching all formulas, discrepancies in RFs calculation between two centers ranged from 1% to 277%. Therefore, we evaluated other sources of variability using a stepwise approach, which led us to reduce the inter-center discrepancies to 0% for 22/25 RFs and below 2% for 3 RFs out of 25. In this study we demonstrated that different radiomic applications and masks formats might strongly impact the computation of some RFs. Therefore, when dealing with multi-center studies it is mandatory to adopt all strategies that can help in limiting the differences, thus keeping in mind the feasibility of these strategies in large cohort studies.
Assuntos
Adenocarcinoma/diagnóstico por imagem , Neoplasias do Colo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Neoplasias Retais/diagnóstico por imagem , Software , Tomografia Computadorizada por Raios X/normas , Algoritmos , Humanos , Tomografia Computadorizada por Raios X/métodosRESUMO
BACKGROUND: Radiomics is expected to improve the management of metastatic colorectal cancer (CRC). We aimed at evaluating the impact of liver lesion contouring as a source of variability on radiomic features (RFs). METHODS: After Ethics Committee approval, 70 liver metastases in 17 CRC patients were segmented on contrast-enhanced computed tomography scans by two residents and checked by experienced radiologists. RFs from grey level co-occurrence and run length matrices were extracted from three-dimensional (3D) regions of interest (ROIs) and the largest two-dimensional (2D) ROIs. Inter-reader variability was evaluated with Dice coefficient and Hausdorff distance, whilst its impact on RFs was assessed using mean relative change (MRC) and intraclass correlation coefficient (ICC). For the main lesion of each patient, one reader also segmented a circular ROI on the same image used for the 2D ROI. RESULTS: The best inter-reader contouring agreement was observed for 2D ROIs according to both Dice coefficient (median 0.85, interquartile range 0.78-0.89) and Hausdorff distance (0.21 mm, 0.14-0.31 mm). Comparing RF values, MRC ranged 0-752% for 2D and 0-1567% for 3D. For 24/32 RFs (75%), MRC was lower for 2D than for 3D. An ICC > 0.90 was observed for more RFs for 2D (53%) than for 3D (34%). Only 2/32 RFs (6%) showed a variability between 2D and circular ROIs higher than inter-reader variability. CONCLUSIONS: A 2D contouring approach may help mitigate overall inter-reader variability, albeit stable RFs can be extracted from both 3D and 2D segmentations of CRC liver metastases.