Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 2023 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-38142462

RESUMO

BRCA2 tumor suppressor protein ensures genome integrity by mediating DNA repair via homologous recombination (HR). This function is executed in part by its canonical DNA binding domain located at the C-terminus (BRCA2CTD), the only folded domain of the protein. Most germline pathogenic missense variants are located in this highly conserved region which binds to single-stranded DNA (ssDNA) and to the acidic protein DSS1. These interactions are essential for the HR function of BRCA2. Here, we report that the variant R2645G, identified in breast cancer and located at the DSS1 interface, unexpectedly increases the ssDNA binding activity of BRCA2CTDin vitro. Human cells expressing this variant display a hyper-recombination phenotype, chromosomal instability in the form of chromatid gaps when exposed to DNA damage, and increased PARP inhibitor sensitivity. In mouse embryonic stem cells (mES), this variant alters viability and confers sensitivity to cisplatin and Mitomycin C. These results suggest that BRCA2 interaction with ssDNA needs to be tightly regulated to limit HR and prevent chromosomal instability and we propose that this control mechanism involves DSS1. Given that several missense variants located within this region have been identified in breast cancer patients, these findings might have clinical implications for carriers.

2.
J Med Genet ; 59(1): 75-78, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33219106

RESUMO

INTRODUCTION: Germline CNVs are important contributors to hereditary cancer. In genetic diagnostics, multiplex ligation-dependent probe amplification (MLPA) is commonly used to identify them. However, MLPA is time-consuming and expensive if applied to many genes, hence many routine laboratories test only a subset of genes of interest. METHODS AND RESULTS: We evaluated a next-generation sequencing (NGS)-based CNV detection tool (DECoN) as first-tier screening to decrease costs and turnaround time and expand CNV analysis to all genes of clinical interest in our diagnostics routine. We used DECoN in a retrospective cohort of 1860 patients where a limited number of genes were previously analysed by MLPA, and in a prospective cohort of 2041 patients, without MLPA analysis. In the retrospective cohort, 6 new CNVs were identified and confirmed by MLPA. In the prospective cohort, 19 CNVs were identified and confirmed by MLPA, 8 of these would have been lost in our previous MLPA-restricted detection strategy. Also, the number of genes tested by MLPA across all samples decreased by 93.0% in the prospective cohort. CONCLUSION: Including an in silico germline NGS CNV detection tool improved our genetic diagnostics strategy in hereditary cancer, both increasing the number of CNVs detected and reducing turnaround time and costs.


Assuntos
Variações do Número de Cópias de DNA , Detecção Precoce de Câncer , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Neoplasias/genética , Software , Custos e Análise de Custo , Predisposição Genética para Doença , Testes Genéticos/economia , Testes Genéticos/métodos , Sequenciamento de Nucleotídeos em Larga Escala/economia , Humanos , Mutação , Neoplasias/congênito , Neoplasias/diagnóstico , Estudos Prospectivos , Estudos Retrospectivos , Análise de Sequência de DNA/economia , Análise de Sequência de DNA/métodos
3.
Bioinformatics ; 37(22): 4227-4229, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33983414

RESUMO

SUMMARY: Germline copy-number variants (CNVs) are relevant mutations for multiple genetics fields, such as the study of hereditary diseases. However, available benchmarks show that all next-generation sequencing (NGS) CNV calling tools produce false positives. We developed CNVfilteR, an R package that uses the single-nucleotide variant calls usually obtained in germline NGS pipelines to identify those false positives. The package can detect both false deletions and false duplications. We evaluated CNVfilteR performance on callsets generated by 13 CNV calling tools on three whole-genome sequencing and 541 panel samples, showing a decrease of up to 44.8% in false positives and consistent F1-score increase. Using CNVfilteR to detect false-positive calls can improve the overall performance of existing CNV calling pipelines. AVAILABILITY AND IMPLEMENTATION: CNVfilteR is released under Artistic-2.0 License. Source code and documentation are freely available at Bioconductor (http://www.bioconductor.org/packages/CNVfilteR). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Software , Sequenciamento Completo do Genoma , Mutação , Variações do Número de Cópias de DNA
4.
Int J Mol Sci ; 22(9)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33924881

RESUMO

Biallelic germline mismatch repair (MMR) gene (MLH1, MSH2, MSH6, and PMS2) mutations are an extremely rare event that causes constitutional mismatch repair deficiency (CMMRD) syndrome. CMMRD is underdiagnosed and often debuts with pediatric malignant brain tumors. A high degree of clinical awareness of the CMMRD phenotype is needed to identify new cases. Immunohistochemical (IHC) assessment of MMR protein expression and analysis of microsatellite instability (MSI) are the first tools with which to initiate the study of this syndrome in solid malignancies. MMR IHC shows a hallmark pattern with absence of staining in both neoplastic and non-neoplastic cells for the biallelic mutated gene. However, MSI often fails in brain malignancies. The aim of this report is to draw attention to the peculiar IHC profile that characterizes CMMRD syndrome and to review the difficulties in reaching an accurate diagnosis by describing the case of two siblings with biallelic MSH6 germline mutations and brain tumors. Given the difficulties involved in early diagnosis of CMMRD we propose the use of the IHC of MMR proteins in all malignant brain tumors diagnosed in individuals younger than 25 years-old to facilitate the diagnosis of CMMRD and to select those neoplasms that will benefit from immunotherapy treatment.


Assuntos
Neoplasias Encefálicas/diagnóstico , Neoplasias Colorretais/diagnóstico , Proteínas de Ligação a DNA/genética , Síndromes Neoplásicas Hereditárias/diagnóstico , Neoplasias Encefálicas/genética , Pré-Escolar , Neoplasias Colorretais/genética , Diagnóstico Diferencial , Feminino , Humanos , Síndromes Neoplásicas Hereditárias/genética , Neurofibromatoses/diagnóstico
5.
Hum Mutat ; 41(12): 2128-2142, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32906215

RESUMO

CHEK2 variants are associated with intermediate breast cancer risk, among other cancers. We aimed to comprehensively describe CHEK2 variants in a Spanish hereditary cancer (HC) cohort and adjust the American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG-AMP) guidelines for their classification. First, three CHEK2 frequent variants were screened in a retrospective Hereditary Breast and Ovarian Cancer cohort of 516 patients. After, the whole CHEK2 coding region was analyzed by next-generation sequencing in 1848 prospective patients with HC suspicion. We refined ACMG-AMP criteria and applied different combined rules to classify CHEK2 variants and define risk alleles. We identified 10 CHEK2 null variants, 6 missense variants with discordant interpretation in ClinVar database, and 35 additional variants of unknown significance. Twelve variants were classified as (likely)-pathogenic; two can also be considered "established risk-alleles" and one as "likely risk-allele." The prevalence of (likely)-pathogenic variants in the HC cohort was 0.8% (1.3% in breast cancer patients and 1.0% in hereditary nonpolyposis colorectal cancer patients). Here, we provide ACMG adjustment guidelines to classify CHEK2 variants. We hope that this study would be useful for variant classification of other genes with low effect variants.


Assuntos
Quinase do Ponto de Checagem 2/genética , Variação Genética , Neoplasias/genética , Sociedades Científicas , Sequência de Bases , Estudos de Coortes , Variações do Número de Cópias de DNA/genética , Família , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Anotação de Sequência Molecular , Mutação/genética , Neoplasias/patologia , Linhagem , Sítios de Splice de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
6.
Genet Med ; 22(12): 2089-2100, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32792570

RESUMO

PURPOSE: Germline pathogenic variants in the exonuclease domain (ED) of polymerases POLE and POLD1 predispose to adenomatous polyps, colorectal cancer (CRC), endometrial tumors, and other malignancies, and exhibit increased mutation rate and highly specific associated mutational signatures. The tumor spectrum and prevalence of POLE and POLD1 variants in hereditary cancer are evaluated in this study. METHODS: POLE and POLD1 were sequenced in 2813 unrelated probands referred for genetic counseling (2309 hereditary cancer patients subjected to a multigene panel, and 504 patients selected based on phenotypic characteristics). Cosegregation and case-control studies, yeast-based functional assays, and tumor mutational analyses were performed for variant interpretation. RESULTS: Twelve ED missense variants, 6 loss-of-function, and 23 outside-ED predicted-deleterious missense variants, all with population allele frequencies <1%, were identified. One ED variant (POLE p.Met294Arg) was classified as likely pathogenic, four as likely benign, and seven as variants of unknown significance. The most commonly associated tumor types were colorectal, endometrial and ovarian cancers. Loss-of-function and outside-ED variants are likely not pathogenic for this syndrome. CONCLUSIONS: Polymerase proofreading-associated syndrome constitutes 0.1-0.4% of familial cancer cases, reaching 0.3-0.7% when only CRC and polyposis are considered. ED variant interpretation is challenging and should include multiple pieces of evidence.


Assuntos
Neoplasias Colorretais , DNA Polimerase II , DNA Polimerase II/genética , DNA Polimerase III , Mutação em Linhagem Germinativa , Humanos , Mutação , Proteínas de Ligação a Poli-ADP-Ribose/genética
7.
J Med Genet ; 56(8): 521-525, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30580288

RESUMO

IMPORTANCE: Genetic testing of hereditary cancer using comprehensive gene panels can identify patients with more than one pathogenic mutation in high and/or moderate-risk-associated cancer genes. This phenomenon is known as multilocus inherited neoplasia alleles syndrome (MINAS), which has been potentially linked to more severe clinical manifestations. OBJECTIVE: To determine the prevalence and clinical features of MINAS in a large cohort of adult patients with hereditary cancer homogeneously tested with the same gene panel. PATIENTS AND METHODS: A cohort of 1023 unrelated patients with suspicion of hereditary cancer was screened using a validated panel including up to 135 genes associated with hereditary cancer and phakomatoses. RESULTS: Thirteen (1.37%) patients harbouring two pathogenic mutations in dominant cancer-predisposing genes were identified, representing 5.7% (13/226) of patients with pathogenic mutations. Most (10/13) of these cases presented clinical manifestations associated with only one of the mutations identified. One case showed mutations in MEN1 and MLH1 and developed tumours associated with both cancer syndromes. Interestingly, three of the double mutants had a young age of onset or severe breast cancer phenotype and carried mutations in moderate to low-risk DNA damage repair-associated genes; two of them presented biallelic inactivation of CHEK2. We included these two patients for the sake of their clinical interest although we are aware that they do not exactly fulfil the definition of MINAS since both mutations are in the same gene. CONCLUSIONS AND RELEVANCE: Genetic analysis of a broad cancer gene panel identified the largest series of patients with MINAS described in a single study. Overall, our data do not support the existence of more severe manifestations in double mutants at the time of diagnosis although they do confirm previous evidence of severe phenotype in biallelic CHEK2 and other DNA repair cancer-predisposing genes.


Assuntos
Alelos , Estudos de Associação Genética , Loci Gênicos , Predisposição Genética para Doença , Neoplasias/diagnóstico , Neoplasias/genética , Fenótipo , Adulto , Idoso , Biomarcadores Tumorais/genética , Feminino , Estudos de Associação Genética/métodos , Testes Genéticos , Humanos , Padrões de Herança , Masculino , Pessoa de Meia-Idade , Linhagem , Índice de Gravidade de Doença , Síndrome
8.
Hum Mutat ; 40(9): 1557-1578, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31131967

RESUMO

The multifactorial likelihood analysis method has demonstrated utility for quantitative assessment of variant pathogenicity for multiple cancer syndrome genes. Independent data types currently incorporated in the model for assessing BRCA1 and BRCA2 variants include clinically calibrated prior probability of pathogenicity based on variant location and bioinformatic prediction of variant effect, co-segregation, family cancer history profile, co-occurrence with a pathogenic variant in the same gene, breast tumor pathology, and case-control information. Research and clinical data for multifactorial likelihood analysis were collated for 1,395 BRCA1/2 predominantly intronic and missense variants, enabling classification based on posterior probability of pathogenicity for 734 variants: 447 variants were classified as (likely) benign, and 94 as (likely) pathogenic; and 248 classifications were new or considerably altered relative to ClinVar submissions. Classifications were compared with information not yet included in the likelihood model, and evidence strengths aligned to those recommended for ACMG/AMP classification codes. Altered mRNA splicing or function relative to known nonpathogenic variant controls were moderately to strongly predictive of variant pathogenicity. Variant absence in population datasets provided supporting evidence for variant pathogenicity. These findings have direct relevance for BRCA1 and BRCA2 variant evaluation, and justify the need for gene-specific calibration of evidence types used for variant classification.


Assuntos
Proteína BRCA1/genética , Proteína BRCA2/genética , Biologia Computacional/métodos , Mutação de Sentido Incorreto , Neoplasias/diagnóstico , Processamento Alternativo , Detecção Precoce de Câncer , Feminino , Predisposição Genética para Doença , Humanos , Funções Verossimilhança , Masculino , Herança Multifatorial , Neoplasias/genética
9.
Int J Cancer ; 145(10): 2682-2691, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30927264

RESUMO

Multigene panels provide a powerful tool for analyzing several genes simultaneously. We evaluated the frequency of pathogenic variants (PV) in customized predefined panels according to clinical suspicion by phenotype and compared it to the yield obtained in the analysis of our clinical research gene panel. We also investigated mutational yield of opportunistic testing of BRCA1/2 and mismatch repair (MMR) genes in all patients. A total of 1,205 unrelated probands with clinical suspicion of hereditary cancer were screened for germline mutations using panel testing. Overall, 1,048 females and 157 males were analyzed, mean age at cancer diagnosis was 48; 883 had hereditary breast/ovarian cancer-suspicion, 205 hereditary nonpolyposis colorectal cancer (HNPCC)-suspicion, 73 adenomatous-polyposis-suspicion and 44 with other/multiple clinical criteria. At least one PV was found in 150 probands (12%) analyzed by our customized phenotype-driven panel. Tumoral MMR deficiency predicted for the presence of germline MMR gene mutations in patients with HNPCC-suspicion (46/136 vs. 0/56 in patients with and without MMR deficiency, respectively). Opportunistic testing additionally identified five MSH6, one BRCA1 and one BRCA2 carriers (0.6%). The analysis of the extended 24-gene panel provided 25 additional PVs (2%), including in 4 out of 51 individuals harboring MMR-proficient colorectal tumors (2 CHEK2 and 2 ATM). Phenotype-based panels provide a notable rate of PVs with clinical actionability. Opportunistic testing of MMR and BRCA genes leads to a significant straightforward identification of MSH6, BRCA1 and BRCA2 mutation carriers, and endorses the model of opportunistic testing of genes with clinical utility within a standard genetic counseling framework.


Assuntos
Proteína BRCA1/genética , Proteína BRCA2/genética , Predisposição Genética para Doença , Testes Genéticos/métodos , Síndromes Neoplásicas Hereditárias/diagnóstico , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Reparo de Erro de Pareamento de DNA , Feminino , Genes Supressores de Tumor , Mutação em Linhagem Germinativa , Humanos , Masculino , Anamnese , Pessoa de Meia-Idade , Síndromes Neoplásicas Hereditárias/genética , Linhagem , Fenótipo
10.
Br J Cancer ; 119(8): 978-987, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30283143

RESUMO

BACKGROUND: Constitutional MLH1 epimutations are characterised by monoallelic methylation of the MLH1 promoter throughout normal tissues, accompanied by allele-specific silencing. The mechanism underlying primary MLH1 epimutations is currently unknown. The aim of this study was to perform an in-depth characterisation of constitutional MLH1 epimutations targeting the aberrantly methylated region around MLH1 and other genomic loci. METHODS: Twelve MLH1 epimutation carriers, 61 Lynch syndrome patients, and 41 healthy controls, were analysed by Infinium 450 K array. Targeted molecular techniques were used to characterise the MLH1 epimutation carriers and their inheritance pattern. RESULTS: No nucleotide or structural variants were identified in-cis on the epimutated allele in 10 carriers, in which inter-generational methylation erasure was demonstrated in two, suggesting primary type of epimutation. CNVs outside the MLH1 locus were found in two cases. EPM2AIP1-MLH1 CpG island was identified as the sole differentially methylated region in MLH1 epimutation carriers compared to controls. CONCLUSION: Primary constitutional MLH1 epimutations arise as a focal epigenetic event at the EPM2AIP1-MLH1 CpG island in the absence of cis-acting genetic variants. Further molecular characterisation is needed to elucidate the mechanistic basis of MLH1 epimutations and their heritability/reversibility.


Assuntos
Neoplasias Colorretais Hereditárias sem Polipose/genética , Neoplasias Colorretais/genética , Metilação de DNA/genética , Epigênese Genética/genética , Predisposição Genética para Doença/genética , Proteína 1 Homóloga a MutL/genética , Sequência de Bases , Neoplasias Colorretais/epidemiologia , Ilhas de CpG/genética , Feminino , Haplótipos/genética , Humanos , Masculino , Mutação/genética , Regiões Promotoras Genéticas/genética , Análise de Sequência de DNA
11.
Int J Cancer ; 141(7): 1365-1380, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28577310

RESUMO

In a proportion of patients presenting mismatch repair (MMR)-deficient tumors, no germline MMR mutations are identified, the so-called Lynch-like syndrome (LLS). Recently, MMR-deficient tumors have been associated with germline mutations in POLE and MUTYH or double somatic MMR events. Our aim was to elucidate the molecular basis of MSH2-deficient LS-suspected cases using a comprehensive analysis of colorectal cancer (CRC)-associated genes at germline and somatic level. Fifty-eight probands harboring MSH2-deficient tumors were included. Germline mutational analysis of MSH2 (including EPCAM deletions) and MSH6 was performed. Pathogenicity of MSH2 variants was assessed by RNA analysis and multifactorial likelihood calculations. MSH2 cDNA and methylation of MSH2 and MSH6 promoters were studied. Matched blood and tumor DNA were analyzed using a customized next generation sequencing panel. Thirty-five individuals were carriers of pathogenic or probably pathogenic variants in MSH2 and EPCAM. Five patients harbored 4 different MSH2 variants of unknown significance (VUS) and one had 2 novel MSH6 promoter VUS. Pathogenicity assessment allowed the reclassification of the 4 MSH2 VUS and 6 probably pathogenic variants as pathogenic mutations, enabling a total of 40 LS diagnostics. Predicted pathogenic germline variants in BUB1, SETD2, FAN1 and MUTYH were identified in 5 cases. Three patients had double somatic hits in MSH2 or MSH6, and another 2 had somatic alterations in other MMR genes and/or proofreading polymerases. In conclusion, our comprehensive strategy combining germline and somatic mutational status of CRC-associated genes by means of a subexome panel allows the elucidation of up to 86% of MSH2-deficient suspected LS tumors.


Assuntos
Neoplasias Colorretais Hereditárias sem Polipose/genética , Reparo de Erro de Pareamento de DNA/genética , Proteínas de Ligação a DNA/genética , Mutação em Linhagem Germinativa , Proteína 2 Homóloga a MutS/deficiência , Proteína 2 Homóloga a MutS/genética , DNA Glicosilases/genética , Metilação de DNA , Análise Mutacional de DNA , Proteínas de Ligação a DNA/deficiência , Endodesoxirribonucleases , Molécula de Adesão da Célula Epitelial/genética , Exodesoxirribonucleases/genética , Sequenciamento de Nucleotídeos em Larga Escala , Histona-Lisina N-Metiltransferase/genética , Humanos , Perda de Heterozigosidade , Enzimas Multifuncionais , Regiões Promotoras Genéticas/genética , Proteínas Serina-Treonina Quinases/genética
12.
Breast Cancer Res Treat ; 155(2): 253-60, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26780556

RESUMO

Germline inactivating mutations in the BRCA1 and BRCA2 genes are responsible for hereditary breast and ovarian cancer syndrome (HBOCS). Genetic testing of these genes identifies a significant proportion of variants of uncertain significance (VUS). Elucidation of the clinical impact of these variants is an important challenge in genetic diagnostics and counseling. In this study, we assess the RNA effect of 28 BRCA1 and BRCA2 VUS identified in our set of HBOCS families with the aim of gaining insight into their clinical relevance. mRNA was extracted from VUS carriers and controls lymphocytes cultured for 5-6 days and treated with puromycin. RNA was reverse transcribed to perform transcriptional analysis for the study of splicing aberrations. In silico prediction tools were used to select those variants most likely to affect the RNA splicing process. Six out of the 28 variants analyzed showed an aberrant splicing pattern and could therefore be classified as probably pathogenic mutations. Reclassification of VUS improves the genetic counseling and clinical surveillance of carriers of these mutations and highlights the importance of RNA studies in routine diagnostic laboratories.


Assuntos
Proteína BRCA1/genética , Proteína BRCA2/genética , Mutação em Linhagem Germinativa/genética , Síndrome Hereditária de Câncer de Mama e Ovário/genética , RNA Mensageiro/genética , Feminino , Humanos , Splicing de RNA/genética , Transcrição Gênica/genética
13.
Hum Mutat ; 35(3): 271-7, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24227591

RESUMO

Next-generation sequencing (NGS) has revolutionized genomic research and is set to have a major impact on genetic diagnostics thanks to the advent of benchtop sequencers and flexible kits for targeted libraries. Among the main hurdles in NGS are the difficulty of performing bioinformatic analysis of the huge volume of data generated and the high number of false positive calls that could be obtained, depending on the NGS technology and the analysis pipeline. Here, we present the development of a free and user-friendly Web data analysis tool that detects and filters sequence variants, provides coverage information, and allows the user to customize some basic parameters. The tool has been developed to provide accurate genetic analysis of targeted sequencing of common high-risk hereditary cancer genes using amplicon libraries run in a GS Junior System. The Web resource is linked to our own mutation database, to assist in the clinical classification of identified variants. We believe that this tool will greatly facilitate the use of the NGS approach in routine laboratories.


Assuntos
Biologia Computacional/métodos , Genes Neoplásicos , Testes Genéticos/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Internet , Genoma Humano , Genômica/métodos , Humanos , Interface Usuário-Computador
14.
J Med Genet ; 50(8): 552-63, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23709753

RESUMO

BACKGROUND AND AIM: The majority of mismatch repair (MMR) gene mutations causing Lynch syndrome (LS) occur either in MLH1 or MSH2. However, the relative contribution of PMS2 is less well defined. The aim of this study was to evaluate the role of PMS2 in LS by assessing the pathogenicity of variants of unknown significance (VUS) detected in the mutational analysis of PMS2 in a series of Spanish patients. METHODS: From a cohort of 202 LS suspected patients, 13 patients showing loss of PMS2 expression in tumours were screened for germline mutations in PMS2, using a long range PCR based strategy and multiplex ligation dependent probe amplification (MLPA). Pathogenicity assessment of PMS2 VUS was performed evaluating clinicopathological data, frequency in control population and in silico and in vitro analyses at the RNA and protein level. RESULTS: Overall 25 different PMS2 DNA variants were detected. Fourteen were classified as polymorphisms. Nine variants were classified as pathogenic: seven alterations based on their molecular nature and two after demonstrating a functional defect (c.538-3C>G affected mRNA processing and c.137G>T impaired MMR activity). The c.1569C>G variant was classified as likely neutral while the c.384G>A remained as a VUS. We have also shown that the polymorphic variant c.59G>A is MMR proficient. CONCLUSIONS: Pathogenic PMS2 mutations were detected in 69% of patients harbouring LS associated tumours with loss of PMS2 expression. In all, PMS2 mutations account for 6% of the LS cases identified. The comprehensive functional analysis shown here has been useful in the classification of PMS2 VUS and contributes to refining the role of PMS2 in LS.


Assuntos
Adenosina Trifosfatases/genética , Neoplasias Colorretais Hereditárias sem Polipose/genética , Enzimas Reparadoras do DNA/genética , Proteínas de Ligação a DNA/genética , Mutação em Linhagem Germinativa , Estudos de Coortes , Neoplasias Colorretais Hereditárias sem Polipose/patologia , Reparo de Erro de Pareamento de DNA , Variação Genética , Células HEK293 , Humanos , Endonuclease PMS2 de Reparo de Erro de Pareamento , Polimorfismo Genético , Transfecção
15.
J Mol Diagn ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38851388

RESUMO

The molecular diagnosis of mismatch repair-deficient cancer syndromes is hampered by difficulties in sequencing the PMS2 gene, mainly owing to the PMS2CL pseudogene. Next-generation sequencing short reads cannot be mapped unambiguously by standard pipelines, compromising variant calling accuracy. This study aimed to provide a refined bioinformatic pipeline for PMS2 mutational analysis and explore PMS2 germline pathogenic variant prevalence in an unselected hereditary cancer (HC) cohort. PMS2 mutational analysis was optimized using two cohorts: 192 unselected HC patients for assessing the allelic ratio of paralogous sequence variants, and 13 samples enriched with PMS2 (likely) pathogenic variants screened previously by long-range genomic DNA PCR amplification. Reads were forced to align with the PMS2 reference sequence, except those corresponding to exon 11, where only those intersecting gene-specific invariant positions were considered. Afterward, the refined pipeline's accuracy was validated in a cohort of 40 patients and used to screen 5619 HC patients. Compared with our routine diagnostic pipeline, the PMS2_vaR pipeline showed increased technical sensitivity (0.853 to 0.956) in the validation cohort, identifying all previously PMS2 pathogenic variants found by long-range genomic DNA PCR amplification. Fifteen HC cohort samples carried a pathogenic PMS2 variant (15 of 5619; 0.285%), doubling the estimated prevalence in the general population. The refined open-source approach improved PMS2 mutational analysis accuracy, allowing its inclusion in the routine next-generation sequencing pipeline streamlining PMS2 screening.

16.
Cancer Med ; 13(7): e7041, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38558366

RESUMO

BACKGROUND: Up to 70% of suspected Lynch syndrome patients harboring MMR deficient tumors lack identifiable germline pathogenic variants in MMR genes, being referred to as Lynch-like syndrome (LLS). Previous studies have reported biallelic somatic MMR inactivation in a variable range of LLS-associated tumors. Moreover, translating tumor testing results into patient management remains controversial. Our aim is to assess the challenges associated with the implementation of tumoral MMR gene testing in routine workflows. METHODS: Here, we present the clinical characterization of 229 LLS patients. MMR gene testing was performed in 39 available tumors, and results were analyzed using two variant allele frequency (VAF) thresholds (≥5% and ≥10%). RESULTS AND DISCUSSION: More biallelic somatic events were identified at VAF ≥ 5% than ≥10% (35.9% vs. 25.6%), although the rate of nonconcordant results regarding immunohistochemical pattern increased (30.8% vs. 20.5%). Interpretation difficulties question the current utility of the identification of MMR somatic hits in the diagnostic algorithm of suspected LS cases.


Assuntos
Neoplasias Encefálicas , Neoplasias Colorretais Hereditárias sem Polipose , Neoplasias Colorretais , Síndromes Neoplásicas Hereditárias , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais Hereditárias sem Polipose/diagnóstico , Neoplasias Colorretais Hereditárias sem Polipose/genética , Neoplasias Colorretais Hereditárias sem Polipose/patologia , Mutação em Linhagem Germinativa , Reparo de Erro de Pareamento de DNA/genética
17.
Database (Oxford) ; 20242024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965703

RESUMO

Accurate classification of genetic variants is crucial for clinical decision-making in hereditary cancer. In Spain, genetic diagnostic laboratories have traditionally approached this task independently due to the lack of a dedicated resource. Here we present SpadaHC, a web-based database for sharing variants in hereditary cancer genes in the Spanish population. SpadaHC is implemented using a three-tier architecture consisting of a relational database, a web tool and a bioinformatics pipeline. Contributing laboratories can share variant classifications and variants from individuals in Variant Calling Format (VCF) format. The platform supports open and restricted access, flexible dataset submissions, automatic pseudo-anonymization, VCF quality control, variant normalization and liftover between genome builds. Users can flexibly explore and search data, receive automatic discrepancy notifications and access SpadaHC population frequencies based on many criteria. In February 2024, SpadaHC included 18 laboratory members, storing 1.17 million variants from 4306 patients and 16 343 laboratory classifications. In the first analysis of the shared data, we identified 84 genetic variants with clinically relevant discrepancies in their classifications and addressed them through a three-phase resolution strategy. This work highlights the importance of data sharing to promote consistency in variant classifications among laboratories, so patients and family members can benefit from more accurate clinical management. Database URL: https://spadahc.ciberisciii.es/.


Assuntos
Bases de Dados Genéticas , Humanos , Espanha , Variação Genética , Neoplasias/genética , Genes Neoplásicos , Predisposição Genética para Doença
18.
Breast Cancer Res Treat ; 132(3): 979-92, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21735045

RESUMO

Comprehensive genetic testing of the breast cancer susceptibility genes BRCA1 and BRCA2 identified approximately 16% of variants of unknown significance (VUS), a significant proportion of which could affect the correct splicing of the genes. Our aim is to establish a workflow for classifying VUS in these complex genes, the first stage of which is splicing analysis. We used a combined approach consisting of five in silico splicing prediction programs and RT-PCR analysis for a set of 26 variants not previously studied at the mRNA level and six variants that had already been studied, four of which were used as positive controls as they were found to affect the splicing of these genes and the other two were used as negative controls. We identified a splicing defect in 8 of the 26 newly studied variants and ruled out splicing alteration in the remaining 18 variants. The results for the four positive and the two negative control variants were consistent with results presented in the literature. Our results strongly suggest that the combination of RNA analysis and in silico programs is an important step towards the classification of VUS. The results revealed a very high correlation between experimental data and in silico programs when using tools for predicting acceptor/donor sites but a lower correlation in the case of tools for identifying ESE elements.


Assuntos
Proteína BRCA1/genética , Proteína BRCA2/genética , Síndrome Hereditária de Câncer de Mama e Ovário/genética , RNA Mensageiro/genética , Processamento Alternativo , Proteína BRCA1/metabolismo , Proteína BRCA2/metabolismo , Sequência de Bases , Simulação por Computador , Feminino , Predisposição Genética para Doença , Humanos , Modelos Genéticos , Dados de Sequência Molecular , Mutação , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/metabolismo , Análise de Sequência de RNA
19.
Eur J Med Genet ; 65(1): 104400, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34813939

RESUMO

One of the main factors influencing the clinical utility of genetic tests for cancer predisposition is the ability to provide actionable classifications (ie pathogenic or benign). However, a large fraction of the variants identified in cancer predisposing genes (CPGs) are of uncertain significance (VUS), and cannot be used for clinical purposes either to identify individuals at risk or to drive treatment. Here we analyze the current status of VUS identification in a subset of 24 CPGs included by the American College of Medical Genetics/Association for Molecular Pathology in the list of genes that should be considered for the return of incidental findings. To this purpose we retrieved published literature using different search strings according to the frequency of the condition and we extracted corresponding data from ClinVar. The total number of VUS has not decreased with time, due to widespread multigene panel testing, and the relative yield of VUS compared to pathogenic variants is higher in more recent studies, which tend to involve series not selected for the presence of specific high risk criteria. In addition, only few studies adopt gene specific interpretation criteria when these are available. Despite the large yield of VUS associated with multigene testing, the data obtained from such studies can be very useful for variant classification, especially for those variants that are more likely to be benign, since these are expected to be detected more frequently in a population that does not show gene specific manifestations. In addition, wider use of gene specific interpretation criteria should be promoted in order to optimize the interpretation process.


Assuntos
Predisposição Genética para Doença , Neoplasias/genética , Variação Genética , Humanos
20.
Eur J Hum Genet ; 30(4): 485-489, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34285382

RESUMO

Germline variants that affect the proofreading activity of polymerases epsilon (POLE) and delta (POLD1) predispose to colorectal adenomas and carcinomas, among other cancers. All cancer-associated pathogenic variants reported to date consist of non-disruptive genetic changes affecting the sequence that codifies the exonuclease domain (ED). Generally, disruptive (frameshift, stop-gain) POLE and POLD1 variants and missense variants outside the ED do not predispose to cancer. However, this statement may not be true for some, very specific variants that would indirectly affect the proofreading activity of the corresponding polymerase. We evaluated, by using multiple approaches, the possibility that POLD1 c.883G>A; p.(Val295Met), -a variant located 9 amino acids upstream the ED and present in ~0.25% of hereditary cancer patients-, affects POLD1 proofreading activity. Our findings show cumulative evidence that support no alteration of the proofreading activity and lack of association with cancer. The variant is classified as likely benign according to the ACMG/AMP guidelines.


Assuntos
Adenoma , Neoplasias Colorretais , DNA Polimerase III , Adenoma/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , DNA Polimerase II/química , DNA Polimerase II/genética , DNA Polimerase III/química , DNA Polimerase III/genética , Mutação em Linhagem Germinativa , Humanos , Proteínas de Ligação a Poli-ADP-Ribose/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA