Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 32(4): 045704, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33017808

RESUMO

Graphene-based nano-porous materials (GNM) are potentially useful for all those applications needing a large specific surface area (SSA), typical of the bidimensional graphene, yet realized in the bulk dimensionality. Such applications include for instance gas storage and sorting, catalysis and electrochemical energy storage. While a reasonable control of the structure is achieved in micro-porous materials by using nano-micro particles as templates, the controlled production or even characterization of GNMs with porosity strictly at the nano-scale still raises issues. These are usually produced using dispersion of nano-flakes as precursors resulting in little control on the final structure, which in turn reflects in problems in the structural model building for computer simulations. In this work, we describe a strategy to build models for these materials with predetermined structural properties (SSA, density, porosity), which exploits molecular dynamics simulations, Monte Carlo methods and machine learning algorithms. Our strategy is inspired by the real synthesis process: starting from randomly distributed flakes, we include defects, perforation, structure deformation and edge saturation on the fly, and, after structural refinement, we obtain realistic models, with given structural features. We find relationships between the structural characteristics and size distributions of the starting flake suspension and the final structure, which can give indications for more efficient synthesis routes. We subsequently give a full characterization of the models versus H2 adsorption, from which we extract quantitative relationship between the structural parameters and the gravimetric density. Our results quantitatively clarify the role of surfaces and edges relative amount in determining the H2 adsorption, and suggest strategies to overcome the inherent physical limitations of these materials as adsorbers. We implemented the model building and analysis procedures in software tools, freely available upon request.

2.
G Ital Nefrol ; 27(1): 82-4, 2010.
Artigo em Italiano | MEDLINE | ID: mdl-20191464

RESUMO

We describe the case of an 80-year-old man who came to our observation with pain in his left side and iliac region. Ultrasonography showed an incidentaloma with a largest diameter of 10 cm in the left suprarenal fossa. It extended downward and anteriorly from the apex of the left kidney; the picture was suggestive of a saccate hematoma. Further examination resulted in a diagnosis of an adrenally located extranodal non-Hodgkin's lymphoma and the patient was treated accordingly.


Assuntos
Neoplasias das Glândulas Suprarrenais/diagnóstico , Neoplasias das Glândulas Suprarrenais/cirurgia , Adrenalectomia , Dor no Flanco/etiologia , Linfoma não Hodgkin/diagnóstico , Linfoma não Hodgkin/cirurgia , Neoplasias das Glândulas Suprarrenais/complicações , Idoso de 80 Anos ou mais , Diagnóstico Diferencial , Hematoma/diagnóstico , Humanos , Achados Incidentais , Linfoma não Hodgkin/complicações , Masculino , Resultado do Tratamento
3.
J Comput Biol ; 27(2): 189-199, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31770035

RESUMO

Transitions between different conformational states are ubiquitous in proteins. A vast class of conformation-changing proteins includes evolutionary switches, which vary their conformation as an effect of few mutations or weak environmental variations. However, modeling those processes is extremely difficult due to the need of efficiently exploring a vast conformational space to look for the actual transition path. In this study, we report a strategy that simplifies this task attacking the complexity on several sides. We first apply a minimalist coarse-grained model to the protein, based on an empirical force field with a partial structural bias toward one or both the reference structures. We then explore the transition paths by means of stochastic molecular dynamics and select representative structures by means of a principal path-based clustering algorithm. We finally compare this trajectory with that produced by independent methods adopting a morphing-oriented approach. Our analysis indicates that the minimalist model returns trajectories capable of exploring intermediate states with physical meaning, retaining a very low computational cost, which can allow systematic and extensive exploration of the multistable proteins transition pathways.

4.
Front Mol Biosci ; 6: 104, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31750313

RESUMO

Transitions between different conformational states are ubiquitous in proteins, being involved in signaling, catalysis, and other fundamental activities in cells. However, modeling those processes is extremely difficult, due to the need of efficiently exploring a vast conformational space in order to seek for the actual transition path for systems whose complexity is already high in the stable states. Here we report a strategy that simplifies this task attacking the complexity on several sides. We first apply a minimalist coarse-grained model to Calmodulin, based on an empirical force field with a partial structural bias, to explore the transition paths between the apo-closed state and the Ca-bound open state of the protein. We then select representative structures along the trajectory based on a structural clustering algorithm and build a cleaned-up trajectory with them. We finally compare this trajectory with that produced by the online tool MinActionPath, by minimizing the action integral using a harmonic network model, and with that obtained by the PROMPT morphing method, based on an optimal mass transportation-type approach including physical constraints. The comparison is performed both on the structural and energetic level, using the coarse-grained and the atomistic force fields upon reconstruction. Our analysis indicates that this method returns trajectories capable of exploring intermediate states with physical meaning, retaining a very low computational cost, which can allow systematic and extensive exploration of the multi-stable proteins transition pathways.

5.
Artigo em Inglês | MEDLINE | ID: mdl-26066121

RESUMO

We investigate the critical behavior of three-dimensional antiferromagnetic CP(N-1) (ACP(N-1)) models in cubic lattices, which are characterized by a global U(N) symmetry and a local U(1) gauge symmetry. Assuming that critical fluctuations are associated with a staggered gauge-invariant (Hermitian traceless matrix) order parameter, we determine the corresponding Landau-Ginzburg-Wilson (LGW) model. For N=3 this mapping allows us to conclude that the three-component ACP(2) model undergoes a continuous transition that belongs to the O(8) vector universality class, with an effective enlargement of the symmetry at the critical point. This prediction is confirmed by numerical analyses of the finite-size scaling behaviors of the ACP(2) and the O(8) vector models, which show the same universal features at their transitions. We also present a renormalization-group (RG) analysis of the LGW theories for N≥4. We compute perturbative series in two different renormalization schemes and analyze the corresponding RG flow. We do not find stable fixed points that can be associated with continuous transitions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA