Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Int J Mol Sci ; 25(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38396652

RESUMO

The architecture of the root system is fundamental to plant productivity. The rate of root growth, the density of lateral roots, and the spatial structure of lateral and adventitious roots determine the developmental plasticity of the root system in response to changes in environmental conditions. One of the genes involved in the regulation of the slope angle of lateral roots is DEEPER ROOTING 1 (DRO1). Its orthologs and paralogs have been identified in rice, Arabidopsis, and several other species. However, nothing is known about the formation of the slope angle of lateral roots in species with the initiation of lateral root primordia within the parental root meristem. To address this knowledge gap, we identified orthologs and paralogs of the DRO1 gene in cucumber (Cucumis sativus) using a phylogenetic analysis of IGT protein family members. Differences in the transcriptional response of CsDRO1, CsDRO1-LIKE1 (CsDRO1L1), and CsDRO1-LIKE2 (CsDRO1L2) to exogenous auxin were analyzed. The results showed that only CsDRO1L1 is auxin-responsive. An analysis of promoter-reporter fusions demonstrated that the CsDRO1, CsDRO1L1, and CsDRO1L2 genes were expressed in the meristem in cell files of the central cylinder, endodermis, and cortex; the three genes displayed different expression patterns in cucumber roots with only partial overlap. A knockout of individual CsDRO1, CsDRO1L1, and CsDRO1L2 genes was performed via CRISPR/Cas9 gene editing. Our study suggests that the knockout of individual genes does not affect the slope angle formation during lateral root primordia development in the cucumber parental root.


Assuntos
Arabidopsis , Cucumis sativus , Cucumis sativus/metabolismo , Raízes de Plantas/metabolismo , Filogenia , Ácidos Indolacéticos/metabolismo , Meristema/genética , Meristema/metabolismo , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas
2.
Int J Mol Sci ; 24(9)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37176146

RESUMO

In Arabidopsis, the small signaling peptide (peptide hormone) RALF34 is involved in the gene regulatory network of lateral root initiation. In this study, we aimed to understand the nature of the signals induced by RALF34 in the non-model plant cucumber (Cucumis sativus), where lateral root primordia are induced in the apical meristem of the parental root. The RALF family members of cucumber were identified using phylogenetic analysis. The sequence of events involved in the initiation and development of lateral root primordia in cucumber was examined in detail. To elucidate the role of the small signaling peptide CsRALF34 and its receptor CsTHESEUS1 in the initial stages of lateral root formation in the parental root meristem in cucumber, we studied the expression patterns of both genes, as well as the localization and transport of the CsRALF34 peptide. CsRALF34 is expressed in all plant organs. CsRALF34 seems to differ from AtRALF34 in that its expression is not regulated by auxin. The expression of AtRALF34, as well as CsRALF34, is regulated in part by ethylene. CsTHESEUS1 is expressed constitutively in cucumber root tissues. Our data suggest that CsRALF34 acts in a non-cell-autonomous manner and is not involved in lateral root initiation in cucumber.


Assuntos
Arabidopsis , Cucumis sativus , Cucumis sativus/metabolismo , Raízes de Plantas/metabolismo , Filogenia , Meristema/genética , Meristema/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Int J Mol Sci ; 24(8)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37108821

RESUMO

The main role of RALF small signaling peptides was reported to be the alkalization control of the apoplast for improvement of nutrient absorption; however, the exact function of individual RALF peptides such as RALF34 remains unknown. The Arabidopsis RALF34 (AtRALF34) peptide was proposed to be part of the gene regulatory network of lateral root initiation. Cucumber is an excellent model for studying a special form of lateral root initiation taking place in the meristem of the parental root. We attempted to elucidate the role of the regulatory pathway in which RALF34 is a participant using cucumber transgenic hairy roots overexpressing CsRALF34 for comprehensive, integrated metabolomics and proteomics studies, focusing on the analysis of stress response markers. CsRALF34 overexpression resulted in the inhibition of root growth and regulation of cell proliferation, specifically in blocking the G2/M transition in cucumber roots. Based on these results, we propose that CsRALF34 is not part of the gene regulatory networks involved in the early steps of lateral root initiation. Instead, we suggest that CsRALF34 modulates ROS homeostasis and triggers the controlled production of hydroxyl radicals in root cells, possibly associated with intracellular signal transduction. Altogether, our results support the role of RALF peptides as ROS regulators.


Assuntos
Arabidopsis , Cucumis sativus , Humanos , Sinais Direcionadores de Proteínas/genética , Proteômica , Espécies Reativas de Oxigênio/metabolismo , Arabidopsis/metabolismo , Peptídeos/metabolismo , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
4.
Int J Mol Sci ; 22(16)2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34445780

RESUMO

The bacterial pathogen Salmonella enterica, which causes enteritis, has a broad host range and extensive environmental longevity. In water and soil, Salmonella interacts with protozoa and multiplies inside their phagosomes. Although this relationship resembles that between Salmonella and mammalian phagocytes, the interaction mechanisms and bacterial genes involved are unclear. Here, we characterized global gene expression patterns of S. enterica serovar Typhimurium within Acanthamoeba castellanii at the early stage of infection by Cappable-Seq. Gene expression features of S. Typhimurium within A. castellanii were presented with downregulation of glycolysis-related, and upregulation of glyoxylate cycle-related genes. Expression of Salmonella Pathogenicity Island-1 (SPI-1), chemotaxis system, and flagellar apparatus genes was upregulated. Furthermore, expression of genes mediating oxidative stress response and iron uptake was upregulated within A. castellanii as well as within mammalian phagocytes. Hence, global S. Typhimurium gene expression patterns within A. castellanii help better understand the molecular mechanisms of Salmonella adaptation to an amoeba cell and intracellular persistence in protozoa inhabiting water and soil ecosystems.


Assuntos
Acanthamoeba castellanii/microbiologia , Salmonella typhimurium/genética , Virulência/genética , Animais , Proteínas de Bactérias/genética , Ecossistema , Regulação Bacteriana da Expressão Gênica/genética , Ilhas Genômicas/genética , Mamíferos/microbiologia
5.
Ann Bot ; 125(6): 905-923, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32198503

RESUMO

BACKGROUND AND AIMS: Recent findings indicate that Nod factor signalling is tightly interconnected with phytohormonal regulation that affects the development of nodules. Since the mechanisms of this interaction are still far from understood, here the distribution of cytokinin and auxin in pea (Pisum sativum) nodules was investigated. In addition, the effect of certain mutations blocking rhizobial infection and subsequent plant cell and bacteroid differentiation on cytokinin distribution in nodules was analysed. METHODS: Patterns of cytokinin and auxin in pea nodules were profiled using both responsive genetic constructs and antibodies. KEY RESULTS: In wild-type nodules, cytokinins were found in the meristem, infection zone and apical part of the nitrogen fixation zone, whereas auxin localization was restricted to the meristem and peripheral tissues. We found significantly altered cytokinin distribution in sym33 and sym40 pea mutants defective in IPD3/CYCLOPS and EFD transcription factors, respectively. In the sym33 mutants impaired in bacterial accommodation and subsequent nodule differentiation, cytokinin localization was mostly limited to the meristem. In addition, we found significantly decreased expression of LOG1 and A-type RR11 as well as KNOX3 and NIN genes in the sym33 mutants, which correlated with low cellular cytokinin levels. In the sym40 mutant, cytokinins were detected in the nodule infection zone but, in contrast to the wild type, they were absent in infection droplets. CONCLUSIONS: In conclusion, our findings suggest that enhanced cytokinin accumulation during the late stages of symbiosis development may be associated with bacterial penetration into the plant cells and subsequent plant cell and bacteroid differentiation.


Assuntos
Infecções , Rhizobium , Diferenciação Celular , Citocininas , Regulação da Expressão Gênica de Plantas , Humanos , Mutação , Pisum sativum , Células Vegetais , Raízes de Plantas , Simbiose
6.
Ann Bot ; 122(5): 873-888, 2018 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-29684107

RESUMO

Background and Aims: In some plant families, including Cucurbitaceae, initiation and development of lateral roots (LRs) occur in the parental root apical meristem. The objective of this study was to identify the general mechanisms underlying LR initiation (LRI). Therefore, the first cellular events leading to LRI as well as the role of auxin in this process were studied in the Cucurbita pepo root apical meristem. Methods: Transgenic hairy roots harbouring the auxin-responsive promoter DR5 fused to different reporter genes were used for visualizing of cellular auxin response maxima (ARMs) via confocal laser scanning microscopy and 3-D imaging. The effects of exogenous auxin and auxin transport inhibitors on root branching were analysed. Key Results: The earliest LRI event involved a group of symmetric anticlinal divisions in pericycle cell files at a distance of 250-350 µm from the initial cells. The visualization of the ARMs enabled the precise detection of cells involved in determining the site of LR primordium formation. A local ARM appeared in sister cells of the pericycle and endodermis files before the first division. Cortical cells contributed to LR development after the anticlinal divisions in the pericycle via the formation of an ARM. Exogenous auxins did not increase the total number of LRs and did not affect the LRI index. Although exogenous auxin transport inhibitors acted in different ways, they all reduced the number of LRs formed. Conclusions: Literature data, as well as results obtained in this study, suggest that the formation of a local ARM before the first anticlinal formative divisions is the common mechanism underlying LRI in flowering plants. We propose that the mechanisms of the regulation of root branching are independent of the position of the LRI site relative to the parental root tip.


Assuntos
Cucurbita/crescimento & desenvolvimento , Cucurbita/metabolismo , Ácidos Indolacéticos/metabolismo , Meristema/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/metabolismo , Transporte Biológico/efeitos dos fármacos , Meristema/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo
7.
New Phytol ; 210(1): 168-83, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26682876

RESUMO

In this study we analyzed and compared the organization of the tubulin cytoskeleton in nodules of Medicago truncatula and Pisum sativum. We combined antibody labeling and green fluorescent protein tagging with laser confocal microscopy to observe microtubules (MTs) in nodules of both wild-type (WT) plants and symbiotic plant mutants blocked at different steps of nodule development. The 3D MT organization of each histological nodule zone in both M. truncatula and P. sativum is correlated to specific developmental processes. Endoplasmic MTs appear to support infection thread growth, infection droplet formation and bacterial release into the host cytoplasm in nodules of both species. No differences in the organization of the MT cytoskeleton between WT and bacterial release mutants were apparent, suggesting both that the phenotype is not linked to a defect in MT organization and that the growth of hypertrophied infection threads is supported by MTs. Strikingly, bacterial release coincides with a change in the organization of cortical MTs from parallel arrays into an irregular, crisscross arrangement. After release, the organization of endoplasmic MTs is linked to the distribution of symbiosomes. The 3D MT organization of each nodule histological zone in M. truncatula and P. sativum was analyzed and linked to specific developmental processes.


Assuntos
Medicago truncatula/metabolismo , Medicago truncatula/microbiologia , Microtúbulos/metabolismo , Pisum sativum/metabolismo , Pisum sativum/microbiologia , Nódulos Radiculares de Plantas/microbiologia , Sinorhizobium/fisiologia , Tubulina (Proteína)/metabolismo , Retículo Endoplasmático/metabolismo , Meristema/metabolismo , Modelos Biológicos , Fixação de Nitrogênio , Polimerização , Nódulos Radiculares de Plantas/metabolismo
8.
Plant Physiol ; 158(3): 1329-41, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22232385

RESUMO

In legumes, the symbiotic nodules are formed as a result of dedifferentiation and reactivation of cortical root cells. A shoot-acting receptor complex, similar to the Arabidopsis (Arabidopsis thaliana) CLAVATA1 (CLV1)/CLV2 receptor, regulating development of the shoot apical meristem, is involved in autoregulation of nodulation (AON), a mechanism that systemically controls nodule number. The targets of CLV1/CLV2 in the shoot apical meristem, the WUSCHEL (WUS)-RELATED HOMEOBOX (WOX) family transcription factors, have been proposed to be important regulators of apical meristem maintenance and to be expressed in apical meristem "organizers." Here, we focus on the role of the WOX5 transcription factor upon nodulation in Medicago truncatula and pea (Pisum sativum) that form indeterminate nodules. Analysis of temporal WOX5 expression during nodulation with quantitative reverse transcription-polymerase chain reaction and promoter-reporter fusion revealed that the WOX5 gene was expressed during nodule organogenesis, suggesting that WOX genes are common regulators of cell proliferation in different systems. Furthermore, in nodules of supernodulating mutants, defective in AON, WOX5 expression was higher than that in wild-type nodules. Hence, a conserved WUS/WOX-CLV regulatory system might control cell proliferation and differentiation not only in the root and shoot apical meristems but also in nodule meristems. In addition, the link between nodule-derived CLE peptides activating AON in different legumes and components of the AON system was investigated. We demonstrate that the identified AON component, NODULATION3 of pea, might act downstream from or beside the CLE peptides during AON.


Assuntos
Proteínas de Homeodomínio/metabolismo , Medicago truncatula/microbiologia , Oligopeptídeos/metabolismo , Proteínas de Plantas/metabolismo , Nodulação , Nódulos Radiculares de Plantas/microbiologia , Agrobacterium/genética , Agrobacterium/metabolismo , Sequência de Bases , Diferenciação Celular , Proliferação de Células , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Genes Reporter , Proteínas de Homeodomínio/genética , Ácidos Indolacéticos/farmacologia , Medicago truncatula/efeitos dos fármacos , Medicago truncatula/genética , Medicago truncatula/metabolismo , Meristema/genética , Meristema/metabolismo , Dados de Sequência Molecular , Oligopeptídeos/genética , Pisum sativum/efeitos dos fármacos , Pisum sativum/genética , Pisum sativum/metabolismo , Pisum sativum/microbiologia , Proteínas de Plantas/genética , Regiões Promotoras Genéticas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Rhizobium leguminosarum/crescimento & desenvolvimento , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/metabolismo , Sinorhizobium/crescimento & desenvolvimento , Simbiose , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
Physiol Plant ; 147(4): 524-40, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22924772

RESUMO

The oxygen protection system for the bacterial nitrogen-fixing enzyme complex nitrogenase in actinorhizal nodules of Casuarina glauca resembles that of legume nodules: infected cells contain large amounts of the oxygen-binding protein hemoglobin and are surrounded by an oxygen diffusion barrier. However, while in legume nodules infected cells are located in the central tissue, actinorhizal nodules are composed of modified lateral roots with infected cells in the expanded cortex. Since an oxygen diffusion barrier around the entire cortex would also block oxygen access to the central vascular system where it is required to provide energy for transport processes, here each individual infected cell is surrounded with an oxygen diffusion barrier. In order to assess the effect of these oxygen diffusion barriers on oxygen supply for energy production for transport processes, apoplastic and symplastic sugar transport pathways in C. glauca nodules were examined. The results support the idea that sugar transport to and within the nodule cortex relies to a large extent on the less energy-demanding symplastic mechanism. This is in line with the assumption that oxygen access to the nodule vascular system is substantially restricted. In spite of this dependence on symplastic transport processes to supply sugars to infected cells, plasmodesmal connections between infected cells, and to a lesser degree with uninfected cells, were reduced during the differentiation of infected cells.


Assuntos
Metabolismo dos Carboidratos , Parede Celular/metabolismo , Lignina/metabolismo , Magnoliopsida/metabolismo , Magnoliopsida/microbiologia , Plasmodesmos/metabolismo , Transporte Biológico , Carboidratos , Frankia , Glucosiltransferases/metabolismo , Magnoliopsida/citologia , Magnoliopsida/genética , Fixação de Nitrogênio , Oxigênio/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Polissacarídeos/metabolismo
10.
Toxins (Basel) ; 15(4)2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-37104172

RESUMO

Phytotoxic macrolides attract attention as prototypes of new herbicides. However, their mechanisms of action (MOA) on plants have not yet been elucidated. This study addresses the effects of two ten-membered lactones, stagonolide A (STA) and herbarumin I (HBI) produced by the fungus Stagonospora cirsii, on Cirsium arvense, Arabidopsis thaliana and Allium cepa. Bioassay of STA and HBI on punctured leaf discs of C. arvense and A. thaliana was conducted at a concentration of 2 mg/mL to evaluate phenotypic responses, the content of pigments, electrolyte leakage from leaf discs, the level of reactive oxygen species, Hill reaction rate, and the relative rise in chlorophyll a fluorescence. The toxin treatments resulted in necrotic and bleached leaf lesions in the dark and in the light, respectively. In the light, HBI treatment caused the drop of carotenoids content in leaves on both plants. The electrolyte leakage caused by HBI was light-dependent, in contrast with that caused by STA. Both compounds induced light-independent peroxide generation in leaf cells but did not affect photosynthesis 6 h after treatment. STA (10 µg/mL) caused strong disorders in root cells of A. thaliana leading to the complete dissipation of the mitochondrial membrane potential one hour post treatment, as well as DNA fragmentation and disappearance of acidic vesicles in the division zone after 8 h; the effects of HBI (50 µg/mL) were much milder. Furthermore, STA was found to inhibit mitosis but did not affect the cytoskeleton in cells of root tips of A. cepa and C. arvense, respectively. Finally, STA was supposed to inhibit the intracellular vesicular traffic from the endoplasmic reticulum to the Golgi apparatus, thus interfering with mitosis. HBI is likely to have another main MOA, probably inhibiting the biosynthesis of carotenoids.


Assuntos
Arabidopsis , Ascomicetos , Toxinas Biológicas , Clorofila A , Lactonas/química , Fotossíntese , Toxinas Biológicas/farmacologia , Folhas de Planta , Carotenoides/farmacologia , Eletrólitos , Clorofila
11.
Ann Bot ; 110(2): 479-89, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22553131

RESUMO

BACKGROUND AND AIMS: In most plant species, initiation of lateral root primordia occurs above the elongation zone. However, in cucurbits and some other species, lateral root primordia initiation and development takes place in the apical meristem of the parental root. Composite transgenic plants obtained by Agrobacterium rhizogenes-mediated transformation are known as a suitable model to study root development. The aim of the present study was to establish this transformation technique for squash. METHODS: The auxin-responsive promoter DR5 was cloned into the binary vectors pKGW-RR-MGW and pMDC162-GFP. Incorporation of 5-ethynyl-2'-deoxyuridine (EdU) was used to evaluate the presence of DNA-synthesizing cells in the hypocotyl of squash seedlings to find out whether they were suitable for infection. Two A. rhizogenes strains, R1000 and MSU440, were used. Roots containing the respective constructs were selected based on DsRED1 or green fluorescent protein (GFP) fluorescence, and DR5::Egfp-gusA or DR5::gusA insertion, respectively, was verified by PCR. Distribution of the response to auxin was visualized by GFP fluorescence or ß-glucuronidase (GUS) activity staining and confirmed by immunolocalization of GFP and GUS proteins, respectively. KEY RESULTS: Based on the distribution of EdU-labelled cells, it was determined that 6-day-old squash seedlings were suited for inoculation by A. rhizogenes since their root pericycle and the adjacent layers contain enough proliferating cells. Agrobacterium rhizogenes R1000 proved to be the most virulent strain on squash seedlings. Squash roots containing the respective constructs did not exhibit the hairy root phenotype and were morphologically and structurally similar to wild-type roots. CONCLUSIONS: The auxin response pattern in the root apex of squash resembled that in arabidopsis roots. Composite squash plants obtained by A. rhizogenes-mediated transformation are a good tool for the investigation of root apical meristem development and root branching.


Assuntos
Cucurbita/crescimento & desenvolvimento , Cucurbita/genética , Ácidos Indolacéticos/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Agrobacterium , Cucurbita/microbiologia , Variação Genética , Genótipo , Modelos Biológicos , Raízes de Plantas/microbiologia , Plantas Geneticamente Modificadas/genética , Transformação Genética
12.
Planta ; 233(1): 139-52, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20938679

RESUMO

To understand carbon partitioning in roots and nodules of Datisca glomerata, activities of sucrose-degrading enzymes and sugar transporter expression patterns were analyzed in both organs, and plasmodesmal connections between nodule cortical cells were examined by transmission electron microscopy. The results indicate that in nodules, the contribution of symplastic transport processes is increased in comparison to roots, specifically in infected cells which develop many secondary plasmodesmata. Invertase activities are dramatically reduced in nodules as compared to roots, indicating that here the main enzyme responsible for the cleavage of sucrose is sucrose synthase. A high-affinity, low-specificity monosaccharide transporter whose expression is induced in infected cells prior to the onset of bacterial nitrogen fixation, and which has an unusually low pH optimum and may be involved in turgor control or hexose retrieval during infection thread growth.


Assuntos
Metabolismo dos Carboidratos , Cucurbitaceae/metabolismo , Fixação de Nitrogênio/fisiologia , Plasmodesmos/metabolismo , Nódulos Radiculares de Plantas/metabolismo , Cucurbitaceae/citologia , Cucurbitaceae/genética , Cucurbitaceae/ultraestrutura , Regulação da Expressão Gênica de Plantas , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Cinética , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Plasmodesmos/enzimologia , Plasmodesmos/ultraestrutura , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Nódulos Radiculares de Plantas/enzimologia , Nódulos Radiculares de Plantas/genética , Saccharomyces cerevisiae/metabolismo
13.
New Phytol ; 189(2): 568-79, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20964693

RESUMO

Jasmonic acid (JA) is a plant signalling compound that has been implicated in the regulation of mutualistic symbioses. In order to understand the spatial distribution of JA biosynthetic capacity in nodules of two actinorhizal species, Casaurina glauca and Datisca glomerata, and one legume, Medicago truncatula, we determined the localization of allene oxide cyclase (AOC) which catalyses a committed step in JA biosynthesis. In all nodule types analysed, AOC was detected exclusively in uninfected cells. The levels of JA were compared in the roots and nodules of the three plant species. The nodules and noninoculated roots of the two actinorhizal species, and the root systems of M. truncatula, noninoculated or nodulated with wild-type Sinorhizobium meliloti or with mutants unable to fix nitrogen, did not show significant differences in JA levels. However, JA levels in all plant organs examined increased significantly on mechanical disturbance. To study whether JA played a regulatory role in the nodules of M. truncatula, composite plants containing roots expressing an MtAOC1-sense or MtAOC1-RNAi construct were inoculated with S. meliloti. Neither an increase nor reduction in AOC levels resulted in altered nodule formation. These data suggest that jasmonates are not involved in the development and function of root nodules.


Assuntos
Cucurbitaceae/metabolismo , Ciclopentanos/metabolismo , Fagaceae/metabolismo , Medicago truncatula/metabolismo , Oxilipinas/metabolismo , Nódulos Radiculares de Plantas/metabolismo , Cucurbitaceae/enzimologia , Fagaceae/enzimologia , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Oxirredutases Intramoleculares/genética , Oxirredutases Intramoleculares/metabolismo , Medicago truncatula/enzimologia , Medicago truncatula/genética , Medicago truncatula/microbiologia , Plantas Geneticamente Modificadas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Nódulos Radiculares de Plantas/citologia , Nódulos Radiculares de Plantas/enzimologia , Nódulos Radiculares de Plantas/microbiologia , Sinorhizobium meliloti/fisiologia , Simbiose
14.
Plants (Basel) ; 11(1)2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35009056

RESUMO

CRISPR/Cas-mediated genome editing is a powerful tool of plant functional genomics. Hairy root transformation is a rapid and convenient approach for obtaining transgenic roots. When combined, these techniques represent a fast and effective means of studying gene function. In this review, we outline the current state of the art reached by the combination of these approaches over seven years. Additionally, we discuss the origins of different Agrobacterium rhizogenes strains that are widely used for hairy root transformation; the components of CRISPR/Cas vectors, such as the promoters that drive Cas or gRNA expression, the types of Cas nuclease, and selectable and screenable markers; and the application of CRISPR/Cas genome editing in hairy roots. The modification of the already known vector pKSE401 with the addition of the rice translational enhancer OsMac3 and the gene encoding the fluorescent protein DsRed1 is also described.

15.
Front Plant Sci ; 12: 695415, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34394148

RESUMO

The ability to develop secondary (post-cytokinetic) plasmodesmata (PD) is an important evolutionary advantage that helps in creating symplastic domains within the plant body. Developmental regulation of secondary PD formation is not completely understood. In flowering plants, secondary PD occur exclusively between cells from different lineages, e.g., at the L1/L2 interface within shoot apices, or between leaf epidermis (L1-derivative), and mesophyll (L2-derivative). However, the highest numbers of secondary PD occur in the minor veins of leaf between bundle sheath cells and phloem companion cells in a group of plant species designated "symplastic" phloem loaders, as opposed to "apoplastic" loaders. This poses a question of whether secondary PD formation is upregulated in general in symplastic loaders. Distribution of PD in leaves and in shoot apices of two symplastic phloem loaders, Alonsoa meridionalis and Asarina barclaiana, was compared with that in two apoplastic loaders, Solanum tuberosum (potato) and Hordeum vulgare (barley), using immunolabeling of the PD-specific proteins and transmission electron microscopy (TEM), respectively. Single-cell sampling was performed to correlate sugar allocation between leaf epidermis and mesophyll to PD abundance. Although the distribution of PD in the leaf lamina (except within the vascular tissues) and in the meristem layers was similar in all species examined, far fewer PD were found at the epidermis/epidermis and mesophyll/epidermis boundaries in apoplastic loaders compared to symplastic loaders. In the latter, the leaf epidermis accumulated sugar, suggesting sugar import from the mesophyll via PD. Thus, leaf epidermis and mesophyll might represent a single symplastic domain in Alonsoa meridionalis and Asarina barclaiana.

16.
Plants (Basel) ; 10(7)2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34371624

RESUMO

The incredible success of crop breeding and agricultural innovation in the last century greatly contributed to the Green Revolution, which significantly increased yields and ensures food security, despite the population explosion. However, new challenges such as rapid climate change, deteriorating soil, and the accumulation of pollutants require much faster responses and more effective solutions that cannot be achieved through traditional breeding. Further prospects for increasing the efficiency of agriculture are undoubtedly associated with the inclusion in the breeding strategy of new knowledge obtained using high-throughput technologies and new tools in the future to ensure the design of new plant genomes and predict the desired phenotype. This article provides an overview of the current state of research in these areas, as well as the study of soil and plant microbiomes, and the prospective use of their potential in a new field of microbiome engineering. In terms of genomic and phenomic predictions, we also propose an integrated approach that combines high-density genotyping and high-throughput phenotyping techniques, which can improve the prediction accuracy of quantitative traits in crop species.

17.
New Phytol ; 181(4): 913-923, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19140932

RESUMO

A comparative analysis of nodule morphogenesis was carried out for three symbiotically defective pea (Pisum sativum) mutants that show abnormalities in nodule development.In the wild-type lines, resumption of cell proliferation in the pericycle and inner cortex results in the development of a nodule primordium, within which are found proliferating cells that harbour infection threads. However, this class of cell is not observed in the mutants RisFixA (sym41) and SGEFix­-2 (sym33) where nodule development is arrested at the point of formation of the apical nodule meristem. Itis proposed that the presence of proliferating cells harbouring infection threads is a prerequisite for normal formation of the nodule meristem.In mutant SGEFix­-1 (sym40), nodule development does not differ from that of wild-type plants in the early stages but is blocked at the stage after nodule meristem persistence. A scheme is proposed for the sequential functioning of pea symbiotic genes Sym33, Sym40 and Sym41 in the programme of nodule development.


Assuntos
Pisum sativum/microbiologia , Nódulos Radiculares de Plantas/microbiologia , Proliferação de Células , Meristema/citologia , Meristema/microbiologia , Mutação , Pisum sativum/genética , Pisum sativum/fisiologia , Rhizobium/fisiologia , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/fisiologia
18.
J Exp Bot ; 60(6): 1873-83, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19321649

RESUMO

Two modes of phloem loading have been proposed, apoplastic and symplastic, depending on the structure of sieve element-companion cell complexes (SE-CCCs) in minor vein phloem. Species are usually classified as either apoplastic or symplastic loaders although the cytology of SE-CCCs in minor veins of the majority of plants indicates that both mechanisms can be simultaneously involved in phloem loading. The functions of structurally different SE-CCCs in minor veins of the stachyose-translocating plant Alonsoa meridionalis were examined. A stachyose synthase gene, AmSTS1, was expressed in intermediary cells but not in the ordinary companion cell of the same vein. In contrast, sucrose transporter AmSUT1 protein was present in ordinary companion cells but not in the neighbouring intermediary cells. These data reveal the principles of phloem sap formation in A. meridionalis and, probably, in many other dicots. The two types of SE-CCCs within one and the same minor vein load different carbohydrates, using contrasting mechanisms for their delivery into the phloem. Lateral sieve pores in the minor vein phloem lead to mixing of the carbohydrates soon after loading. While symplastic and apoplastic pathways can function simultaneously during phloem loading, they are separated at the level of different SE-CCCs combined in phloem endings.


Assuntos
Floema/metabolismo , Scrophulariaceae/metabolismo , Galactosiltransferases/genética , Galactosiltransferases/metabolismo , Regulação da Expressão Gênica de Plantas , Floema/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transporte Proteico , Scrophulariaceae/genética
19.
Front Plant Sci ; 10: 365, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31110507

RESUMO

While in most higher plants, including the model system Arabidopsis thaliana, the formation of lateral root primordia is induced in the elongation zone of the parental root, in seven plant families, including Cucurbitaceae, an alternative root branching mechanism is established such that lateral roots are initiated directly in the apical meristem of the parental root. In Arabidopsis, the transcription factor GATA23 and MEMBRANE-ASSOCIATED KINASE REGULATOR4 (MAKR4) are involved in the gene regulatory network of lateral root initiation. Among all marker genes examined, these are the earliest known marker genes up-regulated by auxin during lateral root initiation. In this study, putative functional orthologs of Arabidopsis GATA23 and MAKR4 were identified in cucumber (Cucumis sativus) and squash (Cucurbita pepo). Both cucurbits contained 26 genes encoding GATA family transcription factors and only one MAKR4 gene. Phylogenetic and transcriptional analysis of up-regulation by auxin led to the identification of GATA23 putative functional orthologs in Cucurbitaceae - CpGATA24 and CsGATA24. In squash, CpMAKR4 was up-regulated by naphthylacetic acid (NAA) and, similar to MAKR4 in Arabidopsis, indole-3-butyric acid (IBA). A detailed analysis of the expression pattern of CpGATA24 and CpMAKR4 in squash roots from founder cell specification until emergence of lateral root primordia was carried out using promoter-fluorescent reporter gene fusions and confocal microscopy. Their expression was induced in the protoxylem, and then expanded to founder cells in the pericycle. Thus, while the overall expression pattern of these genes was significantly different from that in Arabidopsis, in founder cells their expression was induced in the same order as in Arabidopsis. Altogether, these findings suggest that in Cucurbitaceae the putative functional orthologs of GATA23 and MAKR4 might play a role in founder cell specification and primordium positioning during lateral root initiation. The role of the protoxylem in auxin transport as a trigger of founder cells specification and lateral root initiation is discussed.

20.
Metabolites ; 9(2)2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30717245

RESUMO

The common potato, Solanum tuberosum L., is the fourth most important agricultural crop worldwide. Until recently, vegetative propagation by tubers has been the main method of potato cultivation. A shift of interest to sexual potato reproduction by true botanical seeds is due to the appearance of a new hybrid seed breeding strategy whose successful application for many crop species has been supported by male sterility. This investigation was focused on the study of differences in the metabolite profiles of anthers at the mature pollen stage from male-fertile and male-sterile genotypes of S. tuberosum. Application of gas chromatography coupled with a mass spectrometry method allowed detection of metabolic profiles for 192 compounds. Further data analysis with several libraries fully identified 75 metabolites; a similar amount was defined up to the classes. Metabolic profiles in the anthers of fertile genotypes were significantly distinguished from male-sterile ones by the accumulation of carbohydrates, while the anthers of sterile genotypes contained a higher amount of amino acids. In comparison with male-fertile plants, male-sterile genotypes had undeveloped pollen grain characters; i.e., smaller grain size, a thicker exine, "permanent tetrads" that failed to disintegrate into microspores, and the absence of pollen apertures that might be due to a disorder in the metabolism of carbohydrates and fatty acids.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA