Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Mol Cell Neurosci ; 123: 103787, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36252720

RESUMO

Microtubules (MT) are elongated, tubular, cytoskeletal structures formed from polymerization of tubulin dimers. They undergo continuous cycles of polymerization and depolymerization, primarily at their plus ends, termed dynamic instability. Although this is an intrinsic property of MTs, there are a myriad of MT-associated proteins that function in regulating MT dynamic instability and other dynamic processes that shape the MT array. Additionally, MTs assemble into long, semi-rigid structures which act as substrates for long-range, motor-driven transport of many different types of cargoes throughout the cell. Both MT dynamics and motor-based transport play important roles in the function of every known type of cell. Within the last fifteen years many groups have shown that MT dynamics and transport play ever-increasing roles in the neuronal function of mature neurons. Not only are neurons highly polarized cells, but they also connect with one another through synapses to form complex networks. Here we will focus on exciting studies that have illuminated how MTs function both pre-synaptically in axonal boutons and post-synaptically in dendritic spines. It is becoming clear that MT dynamics and transport both serve important functions in synaptic plasticity. Thus, it is not surprising that disruption of MTs, either through hyperstabilization or destabilization, has profound consequences for learning and memory. Together, the studies described here suggest that MT dynamics and transport play key roles in synaptic function and when disrupted result in compromised learning and memory.


Assuntos
Microtúbulos , Tubulina (Proteína) , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo , Sinapses/metabolismo , Neurônios/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo
2.
Microsc Microanal ; 29(6): 2127-2148, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37966978

RESUMO

Cellular neurobiology has benefited from recent advances in the field of cryo-electron tomography (cryo-ET). Numerous structural and ultrastructural insights have been obtained from plunge-frozen primary neurons cultured on electron microscopy grids. With most primary neurons having been derived from rodent sources, we sought to expand the breadth of sample availability by using primary neurons derived from 3rd instar Drosophila melanogaster larval brains. Ultrastructural abnormalities were encountered while establishing this model system for cryo-ET, which were exemplified by excessive membrane blebbing and cellular fragmentation. To optimize neuronal samples, we integrated substrate selection, micropatterning, montage data collection, and chemical fixation. Efforts to address difficulties in establishing Drosophila neurons for future cryo-ET studies in cellular neurobiology also provided insights that future practitioners can use when attempting to establish other cell-based model systems.


Assuntos
Drosophila melanogaster , Neurônios , Animais , Neurônios/ultraestrutura , Tomografia com Microscopia Eletrônica/métodos , Microscopia Crioeletrônica/métodos
3.
Nat Rev Neurosci ; 15(1): 7-18, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24356070

RESUMO

The remarkable ability of a single axon to extend multiple branches and form terminal arbors enables vertebrate neurons to integrate information from divergent regions of the nervous system. Axons select appropriate pathways during development, but it is the branches that extend interstitially from the axon shaft and arborize at specific targets that are responsible for virtually all of the synaptic connectivity in the vertebrate CNS. How do axons form branches at specific target regions? Recent studies have identified molecular cues that activate intracellular signalling pathways in axons and mediate dynamic reorganization of the cytoskeleton to promote the formation of axon branches.


Assuntos
Axônios/fisiologia , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Neurogênese/fisiologia , Animais , Humanos , Vertebrados
4.
J Cell Sci ; 129(1): 166-77, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26567222

RESUMO

Nervous wreck (Nwk) is a conserved F-BAR protein that attenuates synaptic growth and promotes synaptic function in Drosophila. In an effort to understand how Nwk carries out its dual roles, we isolated interacting proteins using mass spectrometry. We report a conserved interaction between Nwk proteins and BAR-SH3 sorting nexins, a family of membrane-binding proteins implicated in diverse intracellular trafficking processes. In mammalian cells, BAR-SH3 sorting nexins induce plasma membrane tubules that localize NWK2, consistent with a possible functional interaction during the early stages of endocytic trafficking. To study the role of BAR-SH3 sorting nexins in vivo, we took advantage of the lack of genetic redundancy in Drosophila and employed CRISPR-based genome engineering to generate null and endogenously tagged alleles of SH3PX1. SH3PX1 localizes to neuromuscular junctions where it regulates synaptic ultrastructure, but not synapse number. Consistently, neurotransmitter release was significantly diminished in SH3PX1 mutants. Double-mutant and tissue-specific-rescue experiments indicate that SH3PX1 promotes neurotransmitter release presynaptically, at least in part through functional interactions with Nwk, and might act to distinguish the roles of Nwk in regulating synaptic growth and function.


Assuntos
Sequência Conservada , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Nexinas de Classificação/metabolismo , Sinapses/metabolismo , Transmissão Sináptica , Animais , Proteínas de Transporte/metabolismo , Linhagem Celular , Córtex Cerebral/citologia , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Mutação/genética , Neurogênese , Junção Neuromuscular/metabolismo , Neurônios/metabolismo , Neurotransmissores/metabolismo , Ligação Proteica , Transporte Proteico , Sinapses/ultraestrutura
6.
J Neurosci ; 36(7): 2267-82, 2016 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-26888936

RESUMO

UNLABELLED: Growth cones interact with the extracellular matrix (ECM) through integrin receptors at adhesion sites termed point contacts. Point contact adhesions link ECM proteins to the actin cytoskeleton through numerous adaptor and signaling proteins. One presumed function of growth cone point contacts is to restrain or "clutch" myosin-II-based filamentous actin (F-actin) retrograde flow (RF) to promote leading edge membrane protrusion. In motile non-neuronal cells, myosin-II binds and exerts force upon actin filaments at the leading edge, where clutching forces occur. However, in growth cones, it is unclear whether similar F-actin-clutching forces affect axon outgrowth and guidance. Here, we show in Xenopus spinal neurons that RF is reduced in rapidly migrating growth cones on laminin (LN) compared with non-integrin-binding poly-d-lysine (PDL). Moreover, acute stimulation with LN accelerates axon outgrowth over a time course that correlates with point contact formation and reduced RF. These results suggest that RF is restricted by the assembly of point contacts, which we show occurs locally by two-channel imaging of RF and paxillin. Further, using micropatterns of PDL and LN, we demonstrate that individual growth cones have differential RF rates while interacting with two distinct substrata. Opposing effects on RF rates were also observed in growth cones treated with chemoattractive and chemorepulsive axon guidance cues that influence point contact adhesions. Finally, we show that RF is significantly attenuated in vivo, suggesting that it is restrained by molecular clutching forces within the spinal cord. Together, our results suggest that local clutching of RF can control axon guidance on ECM proteins downstream of axon guidance cues. SIGNIFICANCE STATEMENT: Here, we correlate point contact adhesions directly with clutching of filamentous actin retrograde flow (RF), which our findings strongly suggest guides developing axons. Acute assembly of new point contact adhesions is temporally and spatially linked to attenuation of RF at sites of forward membrane protrusion. Importantly, clutching of RF is modulated by extracellular matrix (ECM) proteins and soluble axon guidance cues, suggesting that it may regulate axon guidance in vivo. Consistent with this notion, we found that RF rates of spinal neuron growth cones were slower in vivo than what was observed in vitro. Together, our study provides the best evidence that growth cone-ECM adhesions clutch RF locally to guide axons in vivo.


Assuntos
Transporte Axonal/fisiologia , Axônios/fisiologia , Actinas/genética , Animais , Adesão Celular , Cones de Crescimento/fisiologia , Laminina/farmacologia , Neurônios/fisiologia , Polilisina/farmacologia , Ratos , Medula Espinal/citologia , Xenopus laevis
7.
Proc Natl Acad Sci U S A ; 110(13): 5091-6, 2013 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-23479643

RESUMO

Hereditary spastic paraplegias are a clinically and genetically heterogeneous group of gait disorders. Their pathological hallmark is a length-dependent distal axonopathy of nerve fibers in the corticospinal tract. Involvement of other neurons can cause additional neurological symptoms, which define a diverse set of complex hereditary spastic paraplegias. We present two siblings who have the unusual combination of early-onset spastic paraplegia, optic atrophy, and neuropathy. Genome-wide SNP-typing, linkage analysis, and exome sequencing revealed a homozygous c.316C>T (p.R106C) variant in the Trk-fused gene (TFG) as the only plausible mutation. Biochemical characterization of the mutant protein demonstrated a defect in its ability to self-assemble into an oligomeric complex, which is critical for normal TFG function. In cell lines, TFG inhibition slows protein secretion from the endoplasmic reticulum (ER) and alters ER morphology, disrupting organization of peripheral ER tubules and causing collapse of the ER network onto the underlying microtubule cytoskeleton. The present study provides a unique link between altered ER architecture and neurodegeneration.


Assuntos
Axônios/metabolismo , Retículo Endoplasmático/metabolismo , Mutação de Sentido Incorreto , Proteínas do Tecido Nervoso/metabolismo , Polimorfismo de Nucleotídeo Único , Proteínas/metabolismo , Paraplegia Espástica Hereditária/metabolismo , Substituição de Aminoácidos , Animais , Axônios/patologia , Linhagem Celular , Retículo Endoplasmático/genética , Retículo Endoplasmático/patologia , Éxons/genética , Feminino , Ligação Genética , Estudo de Associação Genômica Ampla , Humanos , Masculino , Camundongos , Microtúbulos/genética , Microtúbulos/metabolismo , Microtúbulos/patologia , Proteínas do Tecido Nervoso/genética , Linhagem , Proteínas/genética , Ratos , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/patologia , Xenopus , Peixe-Zebra
8.
J Cell Sci ; 126(Pt 11): 2411-23, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23572514

RESUMO

Cdc42-interacting protein 4 (CIP4), a member of the F-BAR family of proteins, plays important roles in a variety of cellular events by regulating both membrane and actin dynamics. In many cell types, CIP4 functions in vesicle formation, endocytosis and membrane tubulation. However, recent data indicate that CIP4 is also involved in protrusion in some cell types, including cancer cells (lamellipodia and invadopodia) and neurons (ribbed lamellipodia and veils). In neurons, CIP4 localizes specifically to extending protrusions and functions to limit neurite outgrowth early in development. The mechanism by which CIP4 localizes to the protruding edge membrane and induces lamellipodial/veil protrusion and actin rib formation is not known. Here, we show that CIP4 localization to the protruding edge of neurons is dependent on both the phospholipid content of the plasma membrane and the underlying organization of actin filaments. Inhibiting phosphatidylinositol (3,4,5)-trisphosphate (PIP3) production decreases CIP4 at the membrane. CIP4 localization to the protruding edge is also dependent on Rac1/WAVE1, rather than Cdc42/N-WASP. Capping actin filaments with low concentrations of cytochalasin D or by overexpressing capping protein dramatically decreases CIP4 at the protruding edge, whereas inactivating Arp2/3 drives CIP4 to the protruding edge. We also demonstrate that CIP4 dynamically colocalizes with Ena/VASP and DAAM1, two proteins known to induce unbranched actin filament arrays and play important roles in neuronal development. Together, this is the first study to show that the localization of an F-BAR protein depends on both actin filament architecture and phospholipids at the protruding edge of developing neurons.


Assuntos
Citoesqueleto de Actina/metabolismo , Membrana Celular/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Neuritos/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Animais , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Células Cultivadas , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Camundongos , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Antígenos de Histocompatibilidade Menor , Neuropeptídeos/metabolismo , Fosfolipídeos/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Transporte Proteico/fisiologia , Família de Proteínas da Síndrome de Wiskott-Aldrich/metabolismo , Proteína Neuronal da Síndrome de Wiskott-Aldrich/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo
9.
J Neurosci ; 33(42): 16471-82, 2013 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-24133252

RESUMO

Dendritic spines are actin-rich compartments that protrude from the microtubule-rich dendritic shafts of principal neurons. Spines contain receptors and postsynaptic machinery for receiving the majority of glutamatergic inputs. Recent studies have shown that microtubules polymerize from dendritic shafts into spines and that signaling through synaptic NMDA receptors regulates this process. However, the mechanisms regulating microtubule dynamics in dendrites and spines remain unclear. Here we show that in hippocampal neurons from male and female mice, the majority of microtubules enter spines from highly localized sites at the base of spines. These entries occur in response to synapse-specific calcium transients that promote microtubule entry into active spines. We further document that spine calcium transients promote local actin polymerization, and that F-actin is both necessary and sufficient for microtubule entry. Finally, we show that drebrin, a protein known to mediate interactions between F-actin and microtubules, acts as a positive regulator of microtubule entry into spines. Together these results establish for the first time the essential mechanisms regulating microtubule entry into spines and contribute importantly to our understanding of the role of microtubules in synaptic function and plasticity.


Assuntos
Actinas/metabolismo , Cálcio/metabolismo , Espinhas Dendríticas/metabolismo , Microtúbulos/metabolismo , Neuropeptídeos/metabolismo , Sinapses/metabolismo , Animais , Células Cultivadas , Citoesqueleto/metabolismo , Dendritos/metabolismo , Feminino , Hipocampo/metabolismo , Masculino , Camundongos , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo
10.
J Neurochem ; 129(2): 235-9, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24266899

RESUMO

Microtubules in neurons consist of highly dynamic regions as well as stable regions, some of which persist after bouts of severing as short mobile polymers. Concentrated at the plus ends of the highly dynamic regions are microtubule plus end tracking proteins called +TIPs that can interact with an array of other proteins and structures relevant to the plasticity of the neuron. It is also provocative to ponder that short mobile microtubules might similarly convey information with them as they transit within the neuron. Thus, beyond their known conventional functions in supporting neuronal architecture and organelle transport, microtubules may act as 'information carriers' in the neuron.


Assuntos
Microtúbulos/fisiologia , Neurônios/fisiologia , Animais , Humanos , Plasticidade Neuronal/fisiologia , Transdução de Sinais/fisiologia
11.
Nat Cell Biol ; 9(12): 1347-59, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18026093

RESUMO

Extension of neurites from a cell body is essential to form a functional nervous system; however, the mechanisms underlying neuritogenesis are poorly understood. Ena/VASP proteins regulate actin dynamics and modulate elaboration of cellular protrusions. We recently reported that cortical axon-tract formation is lost in Ena/VASP-null mice and Ena/VASP-null cortical neurons lack filopodia and fail to elaborate neurites. Here, we report that neuritogenesis in Ena/VASP-null neurons can be rescued by restoring filopodia formation through ectopic expression of the actin nucleating protein mDia2. Conversely, wild-type neurons in which filopodia formation is blocked fail to elaborate neurites. We also report that laminin, which promotes the formation of filopodia-like actin-rich protrusions, rescues neuritogenesis in Ena/VASP-deficient neurons. Therefore, filopodia formation is a key prerequisite for neuritogenesis in cortical neurons. Neurite initiation also requires microtubule extension into filopodia, suggesting that interactions between actin-filament bundles and dynamic microtubules within filopodia are crucial for neuritogenesis.


Assuntos
Córtex Cerebral/citologia , Neuritos/fisiologia , Neurônios/fisiologia , Pseudópodes/fisiologia , Actinas/metabolismo , Animais , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/fisiologia , Células Cultivadas , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Laminina/fisiologia , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/fisiologia , Proteínas Associadas aos Microtúbulos , Microtúbulos/fisiologia , Mutação , Miosina Tipo II/antagonistas & inibidores , Miosinas/biossíntese , NADPH Desidrogenase/biossíntese , Neurônios/ultraestrutura , Fosfoproteínas/genética , Fosfoproteínas/fisiologia
12.
Mol Biol Cell ; 35(6): mr3, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38630519

RESUMO

Dendritic spines, the mushroom-shaped extensions along dendritic shafts of excitatory neurons, are critical for synaptic function and are one of the first neuronal structures disrupted in neurodevelopmental and neurodegenerative diseases. Microtubule (MT) polymerization into dendritic spines is an activity-dependent process capable of affecting spine shape and function. Studies have shown that MT polymerization into spines occurs specifically in spines undergoing plastic changes. However, discerning the function of MT invasion of dendritic spines requires the specific inhibition of MT polymerization into spines, while leaving MT dynamics in the dendritic shaft, synaptically connected axons and associated glial cells intact. This is not possible with the unrestricted, bath application of pharmacological compounds. To specifically disrupt MT entry into spines we coupled a MT elimination domain (MTED) from the Efa6 protein to the actin filament-binding peptide LifeAct. LifeAct was chosen because actin filaments are highly concentrated in spines and are necessary for MT invasions. Temporally controlled expression of this LifeAct-MTED construct inhibits MT entry into dendritic spines, while preserving typical MT dynamics in the dendrite shaft. Expression of this construct will allow for the determination of the function of MT invasion of spines and more broadly, to discern how MT-actin interactions affect cellular processes.


Assuntos
Espinhas Dendríticas , Microtúbulos , Polimerização , Microtúbulos/metabolismo , Espinhas Dendríticas/metabolismo , Animais , Actinas/metabolismo , Citoesqueleto de Actina/metabolismo , Neurônios/metabolismo , Ratos , Proteínas dos Microfilamentos/metabolismo
13.
bioRxiv ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38496454

RESUMO

Dendritic spines, the mushroom-shaped extensions along dendritic shafts of excitatory neurons, are critical for synaptic function and are one of the first neuronal structures disrupted in neurodevelopmental and neurodegenerative diseases. Microtubule (MT) polymerization into dendritic spines is an activity-dependent process capable of affecting spine shape and function. Studies have shown that MT polymerization into spines occurs specifically in spines undergoing plastic changes. However, discerning the function of MT invasion of dendritic spines requires the specific inhibition of MT polymerization into spines, while leaving MT dynamics in the dendritic shaft, synaptically connected axons and associated glial cells intact. This is not possible with the unrestricted, bath application of pharmacological compounds. To specifically disrupt MT entry into spines we coupled a MT elimination domain (MTED) from the Efa6 protein to the actin filament-binding peptide LifeAct. LifeAct was chosen because actin filaments are highly concentrated in spines and are necessary for MT invasions. Temporally controlled expression of this LifeAct-MTED construct inhibits MT entry into dendritic spines, while preserving typical MT dynamics in the dendrite shaft. Expression of this construct will allow for the determination of the function of MT invasion of spines and more broadly, to discern how MT-actin interactions affect cellular processes.

14.
bioRxiv ; 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37502991

RESUMO

Cellular neurobiology has benefited from recent advances in the field of cryo-electron tomography (cryo-ET). Numerous structural and ultrastructural insights have been obtained from plunge-frozen primary neurons cultured on electron microscopy grids. With most primary neurons been derived from rodent sources, we sought to expand the breadth of sample availability by using primary neurons derived from 3rd instar Drosophila melanogaster larval brains. Ultrastructural abnormalities were encountered while establishing this model system for cryo-ET, which were exemplified by excessive membrane blebbing and cellular fragmentation. To optimize neuronal samples, we integrated substrate selection, micropatterning, montage data collection, and chemical fixation. Efforts to address difficulties in establishing Drosophila neurons for future cryo-ET studies in cellular neurobiology also provided insights that future practitioners can use when attempting to establish other cell-based model systems.

15.
J Neurosci ; 31(43): 15597-603, 2011 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-22031905

RESUMO

Microtubules (MTs) are capable of entering dendritic spines in mature hippocampal neurons through dynamic polymerization. Although these MT invasions are directly associated with neuronal activity, their function remains unknown. Here we demonstrate in mouse hippocampal neurons that MT entries into spines regulate the increase in postsynaptic density-95 (PSD-95) protein after brain-derived neurotrophic factor (BDNF) treatment. Using multiwavelength total internal reflectance fluorescence microscopy, we show that BDNF prolonged the average MT dwell time in spines and that this effect was dependent on TrkB receptor activation. Further examination revealed that peaks of MT polymerization into spines corresponded to rapid PSD-95 increases in the spine head. Over time, spines targeted by MTs after BDNF application, but not before, showed a robust increase in PSD-95. Conversely, spines completely devoid of MT invasions showed no significant change in the level of PSD-95. Pharmacological inhibition of MT dynamics abolished the BDNF-induced increase in PSD-95. Together, these results support the hypothesis that the well known increase in PSD-95 within spines after BDNF treatment is dependent on MT invasions of dendritic spines. Thus, our study provides a direct link between dynamic MTs and the postsynaptic structure, and provides a functional role for MT invasion of dendritic spines.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/farmacologia , Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/metabolismo , Guanilato Quinases/metabolismo , Proteínas de Membrana/metabolismo , Microtúbulos/metabolismo , Neurônios/citologia , Actinas/metabolismo , Análise de Variância , Animais , Proteína 4 Homóloga a Disks-Large , Embrião de Mamíferos , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hipocampo/citologia , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Camundongos , Dinâmica não Linear , Transporte Proteico/efeitos dos fármacos , Fatores de Tempo , Transfecção , Tubulina (Proteína)/metabolismo
16.
Front Genome Ed ; 4: 803375, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35419562

RESUMO

One overarching goal of gene therapy is the replacement of faulty genes with functional ones. A significant hurdle is presented by the fact that under- or over-expression of a protein may cause disease as readily as coding mutations. There is a clear and present need for pipelines to translate experimentally validated gene therapy strategies to clinical application. To address this we developed a modular, single-transgene expression system for replacing target genes with physiologically expressed variants. In order to accomplish this, we first designed a range of 5' UTR "attenuator" sequences which predictably diminish translation of the paired gene. These sequences provide wide general utility by allowing control over translation from high expression, ubiquitous promoters. Importantly, we demonstrate that this permits an entirely novel knockdown and rescue application by pairing microRNA-adapted shRNAs alongside their respective replacement gene on a single transcript. A noteworthy candidate for this corrective approach is the degenerative and uniformly fatal motor neuron disease ALS. A strong proportion of non-idiopathic ALS cases are caused by varied mutations to the SOD1 gene, and as clinical trials to treat ALS are being initiated, it is important to consider that loss-of-function mechanisms contribute to its pathology as strongly as any other factor. As a generalized approach to treat monogenic diseases caused by heterogeneous mutations, we demonstrate complete and predictable control over replacement of SOD1 in stable cell lines by varying the strength of attenuators.

17.
Neuron ; 56(3): 441-55, 2007 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-17988629

RESUMO

Mammalian cortical development involves neuronal migration and neuritogenesis; this latter process forms the structural precursors to axons and dendrites. Elucidating the pathways that regulate the cytoskeleton to drive these processes is fundamental to our understanding of cortical development. Here we show that loss of all three murine Ena/VASP proteins, a family of actin regulatory proteins, causes neuronal ectopias, alters intralayer positioning in the cortical plate, and, surprisingly, blocks axon fiber tract formation during corticogenesis. Cortical fiber tract defects in the absence of Ena/VASP arise from a failure in neurite initiation, a prerequisite for axon formation. Neurite initiation defects in Ena/VASP-deficient neurons are preceded by a failure to form bundled actin filaments and filopodia. These findings provide insight into the regulation of neurite formation and the role of the actin cytoskeleton during cortical development.


Assuntos
Citoesqueleto de Actina/metabolismo , Moléculas de Adesão Celular/metabolismo , Diferenciação Celular/genética , Córtex Cerebral/embriologia , Córtex Cerebral/metabolismo , Proteínas dos Microfilamentos/metabolismo , Neuritos/metabolismo , Fosfoproteínas/metabolismo , Animais , Padronização Corporal/genética , Moléculas de Adesão Celular/genética , Movimento Celular/genética , Células Cultivadas , Córtex Cerebral/citologia , Quimera , Feminino , Cones de Crescimento/metabolismo , Cones de Crescimento/ultraestrutura , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microfilamentos/genética , Mutação/genética , Malformações do Sistema Nervoso/genética , Malformações do Sistema Nervoso/metabolismo , Malformações do Sistema Nervoso/fisiopatologia , Vias Neurais/citologia , Vias Neurais/embriologia , Vias Neurais/metabolismo , Neuritos/ultraestrutura , Fosfoproteínas/genética , Pseudópodes/metabolismo , Pseudópodes/ultraestrutura
18.
Langmuir ; 27(1): 233-9, 2011 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-21121598

RESUMO

Understanding network development in the brain is of tremendous fundamental importance, but it is immensely challenging because of the complexity of both its architecture and function. The mechanisms of axonal navigation to target regions and the specific interactions with guidance factors such as membrane-bound proteins, chemical gradients, mechanical guidance cues, etc., are largely unknown. A current limitation for the study of neural network formation is the ability to control precisely the connectivity of small groups of neurons. A first step in designing such networks is to understand the "rules" central nervous system (CNS) neurons use to form functional connections with one another. Here we begin to delineate novel rules for growth and connectivity of small numbers of neurons patterned on Au substrates in simplified geometries. These studies yield new insights into the mechanisms determining the organizational features present in intact systems. We use a previously reported atomic force microscopy (AFM) nanolithography method to control precisely the location and growth of neurons on these surfaces. By examining a series of systems with different geometrical parameters, we quantitatively and systematically analyze how neuronal growth depends on these parameters.


Assuntos
Ouro/química , Ouro/farmacologia , Nanopartículas Metálicas/química , Neurônios/citologia , Neurônios/efeitos dos fármacos , Animais , Proliferação de Células/efeitos dos fármacos , Difusão , Camundongos , Modelos Biológicos , Neuritos/efeitos dos fármacos , Neuritos/metabolismo , Polilisina/química , Proteínas/química , Proteínas/metabolismo , Propriedades de Superfície
19.
Curr Opin Neurobiol ; 63: 9-14, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32062144

RESUMO

Microtubules (MTs) are a fundamental cytoskeletal component that give neurons structure and are the primary polymer system for long distance transport of cargo throughout the cytoplasm. Although neurons are highly polarized and their structure is often maintained throughout the life of an organism, MTs can remain dynamic in axons and dendrites, undergoing bouts of polymerization and depolymerization, referred to as dynamic instability. Furthermore, MTs can be nucleated outside of the centrosome or MT organizing center (MTOC) that is located in the cell body, allowing dynamic formation and branching of MT polymers throughout the neuron. Together, these recent findings point to a much more dynamic landscape of microtubules in developing and mature neurons than was previously appreciated. Here we will focus on recent studies that show MT dynamics are playing a role at the synapse, both post-synaptically in dendrites and pre-synaptically in axons.


Assuntos
Microtúbulos , Tubulina (Proteína) , Axônios , Neurônios , Sinapses
20.
ACS Chem Neurosci ; 11(11): 1634-1642, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32374999

RESUMO

Neurodegenerative diseases are irreversible conditions that result in progressive degeneration and death of nerve cells. Although the underlying mechanisms may vary, oxidative stress is considered to be one of the major causes of neuronal loss. Importantly, there are still no comprehensive treatments to completely cure these diseases. Therefore, protecting neurons from oxidative damage may be the most effective therapeutic strategy. Here we report a neuroprotective effects of a novel hybrid compound (dlx-23), obtained by conjugating α-lipoic acid (ALA), a natural antioxidant agent, and 3-n-butylphthalide (NBP), a clinical anti-ischemic drug. Dlx-23 protected against neuronal death induced by both H2O2 induced oxidative stress in Cath.-a-differentiated (CAD) cells and 6-OHDA, a toxin model of Parkinson's disease (PD) in SH-SY5Y cells. These activities proved to be more potent than the parent compound (ALA) alone. Dlx-23 scavenged free radicals, increased glutathione levels, and prevented mitochondria damage. In addition, live imaging of primary cortical neurons demonstrated that dlx-23 protected against neuronal growth cone damage induced by H2O2. Taken together these results suggest that dlx-23 has substantial potential to be further developed into a novel neuroprotective agent against oxidative damage and toxin induced neurodegeneration.


Assuntos
Fármacos Neuroprotetores , Ácido Tióctico , Benzofuranos , Linhagem Celular Tumoral , Peróxido de Hidrogênio/toxicidade , Neurônios , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo , Oxidopamina/toxicidade , Espécies Reativas de Oxigênio , Ácido Tióctico/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA