Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 21(24)2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33321789

RESUMO

Nitric oxide (NO) is a key player in both the development and suppression of tumourigenesis depending on the source and concentration of NO. In this review, we discuss the mechanisms by which NO induces DNA damage, influences the DNA damage repair response, and subsequently modulates cell cycle arrest. In some circumstances, NO induces cell cycle arrest and apoptosis protecting against tumourigenesis. NO in other scenarios can cause a delay in cell cycle progression, allowing for aberrant DNA repair that promotes the accumulation of mutations and tumour heterogeneity. Within the tumour microenvironment, low to moderate levels of NO derived from tumour and endothelial cells can activate angiogenesis and epithelial-to-mesenchymal transition, promoting an aggressive phenotype. In contrast, high levels of NO derived from inducible nitric oxide synthase (iNOS) expressing M1 and Th1 polarised macrophages and lymphocytes may exert an anti-tumour effect protecting against cancer. It is important to note that the existing evidence on immunomodulation is mainly based on murine iNOS studies which produce higher fluxes of NO than human iNOS. Finally, we discuss different strategies to target NO related pathways therapeutically. Collectively, we present a picture of NO as a master regulator of cancer development and progression.


Assuntos
Neoplasias/metabolismo , Óxido Nítrico/metabolismo , Transdução de Sinais , Animais , Humanos , Imunoterapia/métodos , Neoplasias/terapia
2.
Int J Cancer ; 142(10): 2056-2067, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29266277

RESUMO

Mesenchymal stem cells (MSCs) are a heterogeneous population of multipotent cells that are capable of differentiating into osteocytes, chondrocytes and adipocytes. Recently, MSCs have been found to home to the tumour site and engraft in the tumour stroma. However, it is not yet known whether they have a tumour promoting or suppressive function. We investigated the interaction between prostate cancer cell lines 22Rv1, DU145 and PC3, and bone marrow-derived MSCs. MSCs were 'educated' for extended periods in prostate cancer cell conditioned media and PC3-educated MSCs were found to be the most responsive with a secretory profile rich in pro-inflammatory cytokines. PC3-educated MSCs secreted increased osteopontin (OPN), interleukin-8 (IL-8) and fibroblast growth factor-2 (FGF-2) and decreased soluble fms-like tyrosine kinase-1 (sFlt-1) compared to untreated MSCs. PC3-educated MSCs showed a reduced migration and proliferation capacity that was dependent on exposure to PC3-conditioned medium. Vimentin and α-smooth muscle actin (αSMA) expression was decreased in PC3-educated MSCs compared to untreated MSCs. PC3 and DU145 education of healthy donor and prostate cancer patient-derived MSCs led to a reduced proportion of FAP+ αSMA+ cells contrary to characteristics commonly associated with cancer associated fibroblasts (CAFs). The migration of PC3 cells was increased toward both PC3-educated and DU145-educated MSCs compared to untreated MSCs, while DU145 migration was only enhanced toward patient-derived MSCs. In summary, MSCs developed an altered phenotype in response to prostate cancer conditioned medium which resulted in increased secretion of pro-inflammatory cytokines, modified functional activity and the chemoattraction of prostate cancer cells.


Assuntos
Citocinas/metabolismo , Citocinas/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Neoplasias da Próstata/metabolismo , Adulto , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Meios de Cultivo Condicionados , Humanos , Masculino , Células-Tronco Mesenquimais/patologia , Pessoa de Meia-Idade , Metástase Neoplásica , Neoplasias da Próstata/patologia , Adulto Jovem
3.
Front Oncol ; 11: 658489, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34055625

RESUMO

Human endogenous retroviruses (HERV), ancient integrations of exogenous viruses, make up 8% of our genome. Long thought of as mere vestigial genetic elements, evidence is now accumulating to suggest a potential functional role in numerous pathologies including neurodegenerative diseases, autoimmune disorders, and multiple cancers. The youngest member of this group of transposable elements is HERV-K (HML-2). Like the majority of HERV sequences, significant post-insertional mutations have disarmed HERV-K (HML-2), preventing it from producing infectious viral particles. However, some insertions have retained limited coding capacity, and complete open reading frames for all its constituent proteins can be found throughout the genome. For this reason HERV-K (HML-2) has garnered more attention than its peers. The tight epigenetic control thought to suppress expression in healthy tissue is lost during carcinogenesis. Upregulation of HERV-K (HML-2) derived mRNA and protein has been reported in a variety of solid and liquid tumour types, and while causality has yet to be established, progressively more data are emerging to suggest this phenomenon may contribute to tumour growth and metastatic capacity. Herein we discuss its potential utility as a diagnostic tool and therapeutic target in light of the current in vitro, in vivo and clinical evidence linking HERV-K (HML-2) to tumour progression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA