Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1255859, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646524

RESUMO

Cutaneous T-cell lymphomas (CTCL) are a group of lymphoproliferative disorders of skin-homing T cells causing chronic inflammation. These disorders cause impairment of the immune environment, which leads to severe infections and/or sepsis due to dysbiosis. In this study, we elucidated the host-microbial interaction in CTCL that occurs during the phototherapeutic treatment regime and determined whether modulation of the skin microbiota could beneficially affect the course of CTCL. EL4 T-cell lymphoma cells were intradermally grafted on the back of C57BL/6 mice. Animals were treated with conventional therapeutics such as psoralen + UVA (PUVA) or UVB in the presence or absence of topical antibiotic treatment (neomycin, bacitracin, and polymyxin B sulphate) as an adjuvant. Microbial colonisation of the skin was assessed to correlate with disease severity and tumour growth. Triple antibiotic treatment significantly delayed tumour occurrence (p = 0.026), which prolonged the survival of the mice (p = 0.033). Allocation to phototherapeutic agents PUVA, UVB, or none of these, along with antibiotic intervention, reduced the tumour growth significantly (p = 0.0327, p ≤ 0.0001, p ≤ 0.0001 respectively). The beta diversity indices calculated using the Bray-Curtis model showed that the microbial population significantly differed after antibiotic treatment (p = 0.001). Upon modulating the skin microbiome by antibiotic treatment, we saw an increase in commensal Clostridium species, e.g., Lachnospiraceae sp. (p = 0.0008), Ruminococcaceae sp. (p = 0.0001)., Blautia sp. (p = 0.007) and a significant reduction in facultative pathogens Corynebacterium sp. (p = 0.0009), Pelomonas sp. (p = 0.0306), Streptococcus sp. (p ≥ 0.0001), Pseudomonas sp. (p = 0.0358), and Cutibacterium sp. (p = 0.0237). Intriguingly, we observed a significant decrease in Staphylococcus aureus frequency (p = 0.0001) but an increase in the overall detection frequency of the Staphylococcus genus, indicating that antibiotic treatment helped regain the microbial balance and increased the number of non-pathogenic Staphylococcus populations. These study findings show that modulating microbiota by topical antibiotic treatment helps to restore microbial balance by diminishing the numbers of pathogenic microbes, which, in turn, reduces chronic inflammation, delays tumour growth, and increases survival rates in our CTCL model. These findings support the rationale to modulate the microbial milieu during the disease course of CTCL and indicate its therapeutic potential.


Assuntos
Linfoma Cutâneo de Células T , Camundongos Endogâmicos C57BL , Microbiota , Neoplasias Cutâneas , Pele , Animais , Microbiota/efeitos dos fármacos , Camundongos , Pele/microbiologia , Pele/patologia , Pele/imunologia , Pele/efeitos dos fármacos , Neoplasias Cutâneas/microbiologia , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/patologia , Linfoma Cutâneo de Células T/microbiologia , Linfoma Cutâneo de Células T/patologia , Linfoma Cutâneo de Células T/tratamento farmacológico , Linfoma Cutâneo de Células T/terapia , Modelos Animais de Doenças , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/administração & dosagem , Linhagem Celular Tumoral , Feminino , Humanos
2.
EMBO Mol Med ; 14(12): e15200, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36341492

RESUMO

Leukemic cutaneous T-cell lymphomas (L-CTCL) are lymphoproliferative disorders of skin-homing mature T-cells causing severe symptoms and high mortality through chronic inflammation, tissue destruction, and serious infections. Despite numerous genomic sequencing efforts, recurrent driver mutations have not been identified, but chromosomal losses and gains are frequent and dominant. We integrated genomic landscape analyses with innovative pharmacologic interference studies to identify key vulnerable nodes in L-CTCL. We detected copy number gains of loci containing the STAT3/5 oncogenes in 74% (n = 17/23) of L-CTCL, which correlated with the increased clonal T-cell count in the blood. Dual inhibition of STAT3/5 using small-molecule degraders and multi-kinase blockers abolished L-CTCL cell growth in vitro and ex vivo, whereby PAK kinase inhibition was specifically selective for L-CTCL patient cells carrying STAT3/5 gains. Importantly, the PAK inhibitor FRAx597 demonstrated encouraging anti-leukemic activity in vivo by inhibiting tumor growth and disease dissemination in intradermally xenografted mice. We conclude that STAT3/5 and PAK kinase interaction represents a new therapeutic node to be further explored in L-CTCL.


Assuntos
Linfoma Cutâneo de Células T , Quinases Ativadas por p21 , Animais , Camundongos , Genômica , Xenoenxertos , Linfoma Cutâneo de Células T/tratamento farmacológico
3.
Elife ; 92020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32484435

RESUMO

Despite the introduction of biologics, topical dithranol (anthralin) has remained one of the most effective anti-psoriatic agents. Serial biopsies from human psoriatic lesions and both the c-Jun/JunB and imiquimod psoriasis mouse model allowed us to study the therapeutic mechanism of this drug. Top differentially expressed genes in the early response to dithranol belonged to keratinocyte and epidermal differentiation pathways and IL-1 family members (i.e. IL36RN) but not elements of the IL-17/IL-23 axis. In human psoriatic response to dithranol, rapid decrease in expression of keratinocyte differentiation regulators (e.g. involucrin, SERPINB7 and SERPINB13), antimicrobial peptides (e.g. ß-defensins like DEFB4A, DEFB4B, DEFB103A, S100 proteins like S100A7, S100A12), chemotactic factors for neutrophils (e.g. CXCL5, CXCL8) and neutrophilic infiltration was followed with much delay by reduction in T cell infiltration. Targeting keratinocytes rather than immune cells may be an alternative approach in particular for topical anti-psoriatic treatment, an area with high need for new drugs.


Assuntos
Antralina/farmacologia , Interleucina-1/metabolismo , Queratinócitos , Psoríase , Animais , Quimiocinas CXC/metabolismo , Fármacos Dermatológicos/farmacologia , Interleucina-1/genética , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Camundongos , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Psoríase/imunologia , Psoríase/metabolismo , Serpinas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Pele/efeitos dos fármacos , Pele/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA