Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(20): e2318119121, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38709930

RESUMO

Brain metastasis of advanced breast cancer often results in deleterious consequences. Metastases to the brain lead to significant challenges in treatment options, as the blood-brain barrier (BBB) prevents conventional therapy. Thus, we hypothesized that creation of a nanoparticle (NP) that distributes to both primary tumor site and across the BBB for secondary brain tumor can be extremely beneficial. Here, we report a simple targeting strategy to attack both the primary breast and secondary brain tumors utilizing a single NP platform. The nature of these mitochondrion-targeted, BBB-penetrating NPs allow for simultaneous targeting and drug delivery to the hyperpolarized mitochondrial membrane of the extracranial primary tumor site in addition to tumors at the brain. By utilizing a combination of such dual anatomical distributing NPs loaded with therapeutics, we demonstrate a proof-of-concept idea to combat the increased metabolic plasticity of brain metastases by lowering two major energy sources, oxidative phosphorylation (OXPHOS) and glycolysis. By utilizing complementary studies and genomic analyses, we demonstrate the utility of a chemotherapeutic prodrug to decrease OXPHOS and glycolysis by pairing with a NP loaded with pyruvate dehydrogenase kinase 1 inhibitor. Decreasing glycolysis aims to combat the metabolic flexibility of both primary and secondary tumors for therapeutic outcome. We also address the in vivo safety parameters by addressing peripheral neuropathy and neurobehavior outcomes. Our results also demonstrate that this combination therapeutic approach utilizes mitochondrial genome targeting strategy to overcome DNA repair-based chemoresistance mechanisms.


Assuntos
Barreira Hematoencefálica , Neoplasias Encefálicas , Neoplasias da Mama , Nanopartículas , Fosforilação Oxidativa , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/patologia , Animais , Humanos , Feminino , Nanopartículas/química , Camundongos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Fosforilação Oxidativa/efeitos dos fármacos , Linhagem Celular Tumoral , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Glicólise/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico
2.
Bioconjug Chem ; 34(6): 1122-1129, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37279374

RESUMO

The metabolic preference of cells toward glycolysis often indicates a diseased state ranging from cancer to other dysfunctions. When a particular cell type utilizes glycolysis as a major energy production pathway, their mitochondria become impaired resulting a cascade of events which eventually contributes to resistance toward therapies to tackle such diseases. In abnormal tissues such as seen in the tumor microenvironment, when cancer cells utilize glycolysis, other cell types such as the immune cells switch their metabolism and prefer such glycolysis. As a result, utilization of therapies to destroy glycolytic preferences by cancer cells results in destruction of immune cells contributing toward an immunosuppressive phenotype. Thus, development of targeted, trackable, comparatively stable glycolysis inhibitors is urgently needed to manage diseases where glycolysis is preferred for disease progression. No glycolysis inhibitor exists which can be tracked and packaged in a delivery vehicle for efficient targeted deployment. Here, we report synthesis, characterization, and formulation of an all-in-one glycolysis inhibitor and document the therapeutic potential along with trackability and glycolysis inhibition of this inhibitor by utilizing an in vivo breast cancer model.


Assuntos
Neoplasias , Humanos , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Neoplasias/tratamento farmacológico , Glicólise/genética , Microambiente Tumoral
3.
Langmuir ; 37(41): 11986-11995, 2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34608800

RESUMO

The development of photocatalytic materials that exploit visible light is imperative for their sustainable application in environmental remediation. While a variety of approaches have been attempted, facile routes to achieve such structures remain limited. In this contribution, a direct route for the production of a SrTiO3/BiOBr/Pd heterojunction is presented that employs a low temperature, sustainable production method. The materials were produced in a two-step process wherein BiOBr nanoplates are fabricated in the presence of the SrTiO3 nanospheres, generating a highly integrated composite material. Pd nanoparticle surface decoration was subsequently employed to facilitate and enhance charge separation lifetimes to optimize reactivity. The structures were fully characterized via a suite of approaches to confirm the final material composition and arrangement. Their reactivity was explored for the degradation of both colored and colorless model environmental pollutants, where the SrTiO3/BiOBr/Pd demonstrated significant reactivity using visible light, leading to substrate degradation in <10 min in some cases. The enhanced reactivity was attributed to the significant integration between materials, facilitating electron transfer. Such studies provide key information for the development of new materials with optimized visible-light-driven photocatalytic reactivity for sustainable environmental remediation.

4.
Biomacromolecules ; 22(10): 4244-4250, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34492195

RESUMO

As the COVID-19 pandemic has continued to spread, studies have shown that hospitalized COVID-19 patients are at significant risk for developing acute kidney injury (AKI), which can cause increased morbidity, the need for dialysis treatment, chronic kidney diseases, and even death. In this paper, we present a proof-of-concept study for the utilization of combination therapeutic-loaded dual-targeted biodegradable nanoparticles (NPs) to treat concurrent AKI and COVID-19 in patients by delivering the therapeutics across the gut epithelial barrier and to the kidney, in order to lower the viral load as well as reduce the symptoms of AKI. Despite recent vaccination efforts and the end of the COVID-19 pandemic in sight, problems related to the long-term effects of COVID-19 will continue to persist, including impacts on patients suffering from AKI and other chronic renal conditions. Therefore, the dual-targeted blended polymeric NP developed in this study to treat concurrent COVID-19 infection and AKI is a useful proof-of-concept nanoplatform for future treatments of these complications.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Rim , Pandemias , Polímeros , Diálise Renal , Estudos Retrospectivos
5.
Proc Natl Acad Sci U S A ; 115(52): E12333-E12342, 2018 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-30530697

RESUMO

The success of nanoparticle-mediated delivery of antioxidant and antiinflammatory-based neuroprotectants to the brain to improve neuronal functions in neurodegenerative diseases has demonstrated lesser impact instead of achieving its full potential. We hypothesized that these failures were due to a combination of parameters, such as: (i) unavailability of a delivery vehicle, which can reproducibly and efficiently transport through the brain capillary endothelium; (ii) inefficient uptake of therapeutic nanoparticles in the neuronal cell population; and (iii) limited ability of a single nanoparticle to cross the two most-impermeable biological barriers, the blood-brain barrier and mitochondrial double membrane, so that a nanoparticle can travel through the brain endothelial barrier to the mitochondria of target cells where oxidative damage is localized. Herein, we demonstrate optimization of a biodegradable nanoparticle for efficient brain accumulation and protection of astrocytes from oxidative damage and mitochondrial dysfunctions to enhance the neuroprotection ability of astrocytes toward neurons using neurodegeneration characteristics in SOD1G93A rats. This biodegradable nanomedicine platform with the ability to accumulate in the brain has the potential to bring beneficial effects in neurodegenerative diseases by modulating the stars, astrocytes in the brain, to enhance their neuroprotective actions.


Assuntos
Barreira Hematoencefálica/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Nanotecnologia/métodos , Animais , Astrócitos/metabolismo , Encéfalo/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Mitocôndrias/metabolismo , Nanomedicina , Nanopartículas/metabolismo , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Neuroproteção/fisiologia , Fármacos Neuroprotetores/farmacologia , Ratos , Ratos Transgênicos
6.
Mol Pharm ; 16(2): 724-736, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30592424

RESUMO

HIV infection is associated with symptoms of accelerated or accentuated aging that are likely to be driven not only by HIV itself but also by the toxicity of long-term use of antiretroviral drugs. Therefore, it is crucially important to understand the mechanisms by which antiretroviral drugs may contribute to aging. The aim of this study was to investigate the hypothesis that antiretroviral drugs cause increased reactive oxygen species (ROS) generation that results in mitochondrial dysfunction and culminates in promoting cellular senescence. In addition, we applied targeted nanoparticle (NP)-based delivery to specifically enrich mitochondria with coenzyme Q10 (CoQ10) in order to enhance antioxidant protection. The studies employed neural progenitor cells (NPCs), as differentiation of these cells into mature neurons is affected both during HIV infection and in the aging process. Exposure of cultured NPCs to various combinations of HIV antiretroviral therapy (ART) induced a more than 2-fold increase in mitochondrial ROS generation and mitochondrial membrane potential, a more than 50% decrease in oxygen consumption and ATP levels, a 60% decrease in SIRT3 expression, and a 42% decrease in cell proliferation relative to control levels. These alterations were accompanied by a 37% increase in beta-galactosidase staining and a shortening of the telomere length to more than half of the length of controls as assessed by quantitative telomere-FISH labeling, indicating accelerated NPC senescence in response to ART exposure. Importantly, CoQ10 delivered by targeted nanoparticles effectively attenuated these effects. Overall, these results indicate that ART promotes cellular senescence by causing mitochondrial dysfunction, which can be successfully reversed by supplementation with mitochondria-targeted CoQ10.


Assuntos
Antirretrovirais/farmacologia , Senescência Celular/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/efeitos dos fármacos , Ubiquinona/análogos & derivados , Animais , Antioxidantes/metabolismo , Linhagem Celular , Infecções por HIV/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Nanopartículas/química , Células-Tronco Neurais/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Sirtuína 3/metabolismo , Ubiquinona/metabolismo
7.
Am J Respir Cell Mol Biol ; 58(2): 216-231, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28915065

RESUMO

Hypoxia has long been implicated in the pathogenesis of fibrotic diseases. Aberrantly activated myofibroblasts are the primary pathological driver of fibrotic progression, yet how various microenvironmental influences, such as hypoxia, contribute to their sustained activation and differentiation is poorly understood. As a defining feature of hypoxia is its impact on cellular metabolism, we sought to investigate how hypoxia-induced metabolic reprogramming affects myofibroblast differentiation and fibrotic progression, and to test the preclinical efficacy of targeting glycolytic metabolism for the treatment of pulmonary fibrosis. Bleomycin-induced pulmonary fibrotic progression was evaluated in two independent, fibroblast-specific, promoter-driven, hypoxia-inducible factor (Hif) 1A knockout mouse models and in glycolytic inhibitor, dichloroacetate-treated mice. Genetic and pharmacological approaches were used to explicate the role of metabolic reprogramming in myofibroblast differentiation. Hypoxia significantly enhanced transforming growth factor-ß-induced myofibroblast differentiation through HIF-1α, whereas overexpression of the critical HIF-1α-mediated glycolytic switch, pyruvate dehydrogenase kinase 1 (PDK1) was sufficient to activate glycolysis and potentiate myofibroblast differentiation, even in the absence of HIF-1α. Inhibition of the HIF-1α/PDK1 axis by genomic deletion of Hif1A or pharmacological inhibition of PDK1 significantly attenuated bleomycin-induced pulmonary fibrosis. Our findings suggest that HIF-1α/PDK1-mediated glycolytic reprogramming is a critical metabolic alteration that acts to promote myofibroblast differentiation and fibrotic progression, and demonstrate that targeting glycolytic metabolism may prove to be a potential therapeutic strategy for the treatment of pulmonary fibrosis.


Assuntos
Hipóxia Celular/fisiologia , Ácido Dicloroacético/farmacologia , Glicólise/fisiologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Fibrose Pulmonar/patologia , Animais , Bleomicina , Linhagem Celular , Humanos , Pulmão/patologia , Camundongos , Camundongos Knockout , Miofibroblastos/citologia , Miofibroblastos/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Piruvato Desidrogenase Quinase de Transferência de Acetil , Interferência de RNA , RNA Interferente Pequeno/genética
8.
Biochemistry ; 57(46): 6500-6513, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30281285

RESUMO

Cisplatin is a major chemotherapeutic that continues to have a significant impact in the treatment of more than 50% of all cancers. Since its Food and Drug Administration approval in 1978 for the treatment of advanced ovarian and bladder cancer, this chemotherapeutic has made significant strides and its application has been extended to a large variety of other cancers. However, the vast majority of patients who receive cisplatin therapy often suffer from nephrotoxicity, neurotoxicity, nausea, and ototoxicity. Numerous methods currently exist for overcoming nephrotoxicity- and nausea-related side effects, but there is no clear prevention to fight ototoxicity and neurotoxicity. In this work, we examined Platin- A, a prodrug of cisplatin and aspirin, using preclinical mouse- and guinea pig-based models and demonstrated its efficacy with reduced ototoxicity. In addition, in vitro studies documented that when Platin- A is used in combination with a clinically relevant dose of radiation, its efficacy can further be improved by attacking cellular bioenergetic profiles, producing multiple modes of DNA damage, and delaying repair of damaged DNA. These studies demonstrated novel properties of the prodrug, Platin- A, highlighting its superior efficacy with reduced toxicity.


Assuntos
Cisplatino/farmacologia , Otopatias/prevenção & controle , Doenças do Sistema Nervoso/prevenção & controle , Neoplasias Ovarianas/tratamento farmacológico , Pró-Fármacos/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Antineoplásicos/farmacologia , Apoptose , Aspirina/farmacologia , Proliferação de Células , Feminino , Cobaias , Humanos , Masculino , Camundongos , Camundongos Nus , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Proc Natl Acad Sci U S A ; 111(29): 10444-9, 2014 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-25002500

RESUMO

Chemoresistance of cisplatin therapy is related to extensive repair of cisplatin-modified DNA in the nucleus by the nucleotide excision repair (NER). Delivering cisplatin to the mitochondria to attack mitochondrial genome lacking NER machinery can lead to a rationally designed therapy for metastatic, chemoresistant cancers and might overcome the problems associated with conventional cisplatin treatment. An engineered hydrophobic mitochondria-targeted cisplatin prodrug, Platin-M, was constructed using a strain-promoted alkyne-azide cycloaddition chemistry. Efficient delivery of Platin-M using a biocompatible polymeric nanoparticle (NP) based on biodegradable poly(lactic-co-glycolic acid)-block-polyethyleneglycol functionalized with a terminal triphenylphosphonium cation, which has remarkable activity to target mitochondria of cells, resulted in controlled release of cisplatin from Platin-M locally inside the mitochondrial matrix to attack mtDNA and exhibited otherwise-resistant advanced cancer sensitive to cisplatin-based chemotherapy. Identification of an optimized targeted-NP formulation with brain-penetrating properties allowed for delivery of Platin-M inside the mitochondria of neuroblastoma cells resulting in ∼17 times more activity than cisplatin. The remarkable activity of Platin-M and its targeted-NP in cisplatin-resistant cells was correlated with the hyperpolarization of mitochondria in these cells and mitochondrial bioenergetics studies in the resistance cells further supported this hypothesis. This unique dual-targeting approach to controlled mitochondrial delivery of cisplatin in the form of a prodrug to attack the mitochondrial genome lacking NER machinery and in vivo distribution of the delivery vehicle in the brain suggested previously undescribed routes for cisplatin-based therapy.


Assuntos
Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Genoma Mitocondrial/genética , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Linhagem Celular Tumoral , Cisplatino/administração & dosagem , Cisplatino/uso terapêutico , Metabolismo Energético/efeitos dos fármacos , Ácido Láctico/química , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Nanopartículas/ultraestrutura , Neuroblastoma/tratamento farmacológico , Neuroblastoma/patologia , Especificidade de Órgãos/efeitos dos fármacos , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Pró-Fármacos/administração & dosagem , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Ratos , Distribuição Tecidual/efeitos dos fármacos
10.
Br J Cancer ; 114(10): 1090-100, 2016 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-27115471

RESUMO

BACKGROUND: African-American (AA) patients with prostate cancer (PCa) respond poorly to current therapy compared with Caucasian American (CA) PCa patients. Although underlying mechanisms are not defined, mitochondrial dysfunction is a key reason for this disparity. METHODS: Cell death, cell cycle, and mitochondrial function/stress were analysed by flow cytometry or by Seahorse XF24 analyzer. Expression of cellular proteins was determined using immunoblotting and real-time PCR analyses. Cell survival/motility was evaluated by clonogenic, cell migration, and gelatin zymography assays. RESULTS: Glycolytic pathway inhibitor dichloroacetate (DCA) inhibited cell proliferation in both AA PCa cells (AA cells) and CA PCa cells (CA cells). AA cells possess reduced endogenous reactive oxygen species, mitochondrial membrane potential (mtMP), and mitochondrial mass compared with CA cells. DCA upregulated mtMP in both cell types, whereas mitochondrial mass was significantly increased in CA cells. DCA enhanced taxol-induced cell death in CA cells while sensitising AA cells to doxorubicin. Reduced expression of heat shock proteins (HSPs) was observed in AA cells, whereas DCA induced expression of CHOP, C/EBP, HSP60, and HSP90 in CA cells. AA cells are more aggressive and metastatic than CA cells. CONCLUSIONS: Restoration of mitochondrial function may provide new option for reducing PCa health disparity among American men.


Assuntos
Ácido Dicloroacético/farmacologia , Proteínas de Choque Térmico/metabolismo , Mitocôndrias/efeitos dos fármacos , Neoplasias da Próstata/etnologia , Neoplasias da Próstata/metabolismo , Negro ou Afro-Americano , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estados Unidos
11.
Chemistry ; 22(9): 3029-36, 2016 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-26807548

RESUMO

Resistance towards chemotherapeutics displayed by cancer cells is a significant stumbling block against fruitful cisplatin-based therapy. A unique dual-acting chemotherapeutic modality, Platin-B, a prodrug of cisplatin and pipobroman-mimicking alkylating agent, was constructed to circumvent tumor resistance. Platin-B exhibited a superior cytotoxicity profile in cisplatin-resistant cancer cells. Enhanced activity and the ability to overcome cancer-induced resistance of Platin-B was related to adduct formation with intracellular glutathione, followed by the activity of Platin-B on the mitochondria of cells, along with its conventional nuclear activity. Alkylating moieties present on Platin-B enhanced its cellular and subcellular concentration and protected it from early drug sequestration by biological thiols.


Assuntos
Antineoplásicos/farmacologia , Cisplatino/farmacologia , Glutationa/química , Mitocôndrias/química , Compostos Organoplatínicos/farmacologia , Pró-Fármacos/química , Pró-Fármacos/uso terapêutico , Alquilação , Linhagem Celular Tumoral , Cisplatino/química , Reparo do DNA , Humanos , Compostos Organoplatínicos/química , Compostos Organoplatínicos/uso terapêutico , Oxirredução
12.
Proc Natl Acad Sci U S A ; 110(23): 9445-50, 2013 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-23671083

RESUMO

Atherosclerosis remains one of the most common causes of death in the United States and throughout the world because of the lack of early detection. Macrophage apoptosis is a major contributor to the instability of atherosclerotic lesions. Development of an apoptosis targeted high-density lipoprotein (HDL)-mimicking nanoparticle (NP) to carry contrast agents for early detection of vulnerable plaques and the initiation of preventative therapies that exploit the vascular protective effects of HDL can be attractive for atherosclerosis. Here, we report the construction of a synthetic, biodegradable HDL-NP platform for detection of vulnerable plaques by targeting the collapse of mitochondrial membrane potential that occurs during apoptosis. This HDL mimic contains a core of biodegradable poly(lactic-co-glycolic acid), cholesteryl oleate, and a phospholipid bilayer coat that is decorated with triphenylphosphonium (TPP) cations for detection of mitochondrial membrane potential collapse. The lipid layer provides the surface for adsorption of apolipoprotein (apo) A-I mimetic 4F peptide, and the core contains diagnostically active quantum dots (QDs) for optical imaging. In vitro uptake, detection of apoptosis, and cholesterol binding studies indicated promising detection ability and therapeutic potential of TPP-HDL-apoA-I-QD NPs. In vitro studies indicated the potential of these NPs in reverse cholesterol transport. In vivo biodistribution and pharmacokinetics indicated favorable tissue distribution, controlled pharmacokinetic parameters, and significant triglyceride reduction for i.v.-injected TPP-HDL-apoA-I-QD NPs in rats. These HDL NPs demonstrate excellent biocompatibility, stability, nontoxic, and nonimmunogenic properties, which prove to be promising for future translation in early plaque diagnosis and might find applications to prevent vulnerable plaque progression.


Assuntos
Aterosclerose/diagnóstico , Lipoproteínas HDL , Modelos Moleculares , Nanopartículas , Pontos Quânticos , Animais , Apoptose/fisiologia , Linhagem Celular , Meios de Contraste/química , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Humanos , Lipoproteínas HDL/química , Lipoproteínas HDL/farmacocinética , Espectrometria de Massas , Potencial da Membrana Mitocondrial/fisiologia , Células-Tronco Mesenquimais , Camundongos , Microscopia Eletrônica de Transmissão , Estrutura Molecular , Nanopartículas/química
13.
J Am Chem Soc ; 137(26): 8324-7, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26086212

RESUMO

A single magic bullet is not enough for treatment of metastatic cancers. However, administration of a combination of free drugs can be extremely challenging because of the inability to control the correct choice of dosages and definitive delivery of the effective drug ratio at the target tissue due to the differences in pharmacokinetics and biodistribution of individual drugs. Here we report an engineered biodegradable polymer containing combination therapeutics that can be self-assembled into a controlled release nanoparticle with abilities to deliver multiple therapeutics in a predefined ratio following temporal release patterns. This platform technology can lead to a rationally designed combination therapy.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Neoplasias/tratamento farmacológico , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Aspirina/administração & dosagem , Linhagem Celular Tumoral , Cisplatino/administração & dosagem , Portadores de Fármacos , Humanos , Concentração Inibidora 50 , Macrófagos/efeitos dos fármacos , Camundongos , Nanomedicina , Metástase Neoplásica , Neoplasias/patologia , Polímeros/química , Células RAW 264.7 , Fatores de Tempo
14.
Proc Natl Acad Sci U S A ; 109(40): 16288-93, 2012 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-22991470

RESUMO

Mitochondrial dysfunctions cause numerous human disorders. A platform technology based on biodegradable polymers for carrying bioactive molecules to the mitochondrial matrix could be of enormous potential benefit in treating mitochondrial diseases. Here we report a rationally designed mitochondria-targeted polymeric nanoparticle (NP) system and its optimization for efficient delivery of various mitochondria-acting therapeutics by blending a targeted poly(d,l-lactic-co-glycolic acid)-block (PLGA-b)-poly(ethylene glycol) (PEG)-triphenylphosphonium (TPP) polymer (PLGA-b-PEG-TPP) with either nontargeted PLGA-b-PEG-OH or PLGA-COOH. An optimized formulation was identified through in vitro screening of a library of charge- and size-varied NPs, and mitochondrial uptake was studied by qualitative and quantitative investigations of cytosolic and mitochondrial fractions of cells treated with blended NPs composed of PLGA-b-PEG-TPP and a triblock copolymer containing a fluorescent quantum dot, PLGA-b-PEG-QD. The versatility of this platform was demonstrated by studying various mitochondria-acting therapeutics for different applications, including the mitochondria-targeting chemotherapeutics lonidamine and α-tocopheryl succinate for cancer, the mitochondrial antioxidant curcumin for Alzheimer's disease, and the mitochondrial uncoupler 2,4-dinitrophenol for obesity. These biomolecules were loaded into blended NPs with high loading efficiencies. Considering efficacy, the targeted PLGA-b-PEG-TPP NP provides a remarkable improvement in the drug therapeutic index for cancer, Alzheimer's disease, and obesity compared with the nontargeted construct or the therapeutics in their free form. This work represents the potential of a single, programmable NP platform for the diagnosis and targeted delivery of therapeutics for mitochondrial dysfunction-related diseases.


Assuntos
Bioengenharia/métodos , Sistemas de Liberação de Medicamentos/métodos , Doenças Mitocondriais/tratamento farmacológico , Nanopartículas/química , Polímeros/química , 2,4-Dinitrofenol , Adipogenia/fisiologia , Análise de Variância , Curcumina , Humanos , Indazóis , Polietilenoglicóis/síntese química , Polietilenoglicóis/química , Poliglactina 910/síntese química , Poliglactina 910/química , Polímeros/metabolismo , alfa-Tocoferol
15.
Chemistry ; 20(23): 6861-5, 2014 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-24756923

RESUMO

The ability to rationally design and construct a platform technology to develop new platinum(IV) [Pt(IV)] prodrugs with functionalities for installation of targeting moieties, delivery systems, fluorescent reporters from a single precursor with the ability to release biologically active cisplatin by using well-defined chemistry is critical for discovering new platinum-based therapeutics. With limited numbers of possibilities considering the sensitivity of Pt(IV) centers, we used a strain-promoted azide-alkyne cycloaddition approach to provide a platform, in which new functionalities can easily be installed on cisplatin prodrugs from a single Pt(IV) precursor. The ability of this platform to be incorporated in nanodelivery vehicle and conjugation to fluorescent reporters were also investigated.


Assuntos
Cisplatino/química , Cobre/química , Pró-Fármacos/química , Alcinos/química , Antineoplásicos/farmacologia , Azidas/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/farmacologia , Química Click , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Reação de Cicloadição , Portadores de Fármacos/química , Humanos , Nanoestruturas/química , Oxirredução , Platina/química , Pró-Fármacos/farmacologia
16.
Proc Natl Acad Sci U S A ; 108(5): 1850-5, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21233423

RESUMO

Targeted delivery and controlled release of inactive platinum (Pt) prodrugs may offer a new approach to improve the efficacy and tolerability of the Pt family of drugs, which are used to treat 50% of all cancers today. Using prostate cancer (PCa) as a model disease, we previously described the engineering of aptamer (Apt)-targeted poly(D,L-lactic-co-glycolic acid)-b-poly(ethylene glycol) (PLGA-b-PEG) nanoparticles (NPs) encapsulating a Pt(IV) prodrug c,t,c[Pt(NH(3))(2)-(O(2)CCH(2)CH(2)CH(2)CH(2)CH(3))(2)Cl(2)] (1) (Pt-PLGA-b-PEG-Apt-NP), which target the extracellular domain of the prostate specific membrane antigen (PSMA), for enhanced in vitro cytotoxicity. Here we demonstrate enhanced in vivo pharmacokinetics (PK), biodistribution, tolerability, and efficacy of Pt-PLGA-b-PEG-Apt-NP (150 ± 15 nm encapsulating ∼5% wt/wt Pt(IV) prodrug) when compared to cisplatin administered in its conventional form in normal Sprague Dawley rats, Swiss Albino mice, and the PSMA-expressing LNCaP subcutaneous xenograft mouse model of PCa, respectively. The 10-d maximum tolerated dose following a single i.v. injection of Pt-PLGA-b-PEG-NP in rats and mice was determined at 40 mg/kg and 5 mg/kg, respectively. PK studies with Pt-PLGA-b-PEG-NP revealed prolonged Pt persistence in systemic blood circulation and decreased accumulation of Pt in the kidneys, a major target site of cisplatin toxicity. Pt-PLGA-b-PEG-Apt-NPs further displayed the significant dose-sparing characteristics of the drug, with equivalent antitumor efficacy in LNCaP xenografts at 1/3 the dose of cisplatin administered in its conventional form (0.3 mg/kg vs. 1 mg/kg). When considering the simultaneous improvement in tolerability and efficacy, the Pt-PLGA-b-PEG-Apt NP provides a remarkable improvement in the drug therapeutic index.


Assuntos
Antineoplásicos/administração & dosagem , Cisplatino/administração & dosagem , Pró-Fármacos/administração & dosagem , Neoplasias da Próstata/tratamento farmacológico , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Cisplatino/farmacocinética , Cisplatino/uso terapêutico , Humanos , Masculino , Camundongos , Pró-Fármacos/farmacocinética , Pró-Fármacos/uso terapêutico , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Angew Chem Int Ed Engl ; 53(7): 1963-7, 2014 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-24453035

RESUMO

Cancer-associated inflammation induces tumor progression to the metastatic stage, thus indicating that a chemo-anti-inflammatory strategy is of interest for the management of aggressive cancers. The platinum(IV) prodrug Platin-A was designed to release cisplatin and aspirin to ameliorate the nephrotoxicity and ototoxicity caused by cisplatin. Platin-A exhibited anticancer and anti-inflammatory properties which are better than a combination of cisplatin and aspirin. These findings highlight the advantages of combining anti-inflammatory treatment with chemotherapy when both the drugs are delivered in the form of a single prodrug.


Assuntos
Aspirina/administração & dosagem , Cisplatino/administração & dosagem , Pró-Fármacos/administração & dosagem , Administração Intravenosa , Aspirina/química , Aspirina/farmacocinética , Cisplatino/química , Cisplatino/farmacocinética , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Pró-Fármacos/química , Pró-Fármacos/farmacocinética
18.
bioRxiv ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38854120

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is characterized by intratumoral abundance of neutrophilic/polymorphonuclear myeloid-derived suppressor cells (PMN-MDSC) which inhibit T-cell function through JAK2/STAT3-regulated arginase activity. To overcome limitations of systemic inhibition of PMN-MDSCs in cancer-bearing patients-i.e., neutropenia and compensatory myelopoietic adaptations-we develop a nanoengineering strategy to target cell-specific signaling exclusively in PMN-MDSCs without provoking neutropenia. We conjugate a chemically modified small-molecule inhibitor of MDSC-surface receptor CXCR2 (AZD5069) with polyethylene glycol (PEG) and chemically graft AZD5069-PEG constructs onto amphiphilic polysaccharide derivatives to engineer CXCR2-homing nanoparticles (CXCR2-NP). Cy5.5 dye-loaded CXCR2-NP showed near-exclusive uptake in PMN-MDSCs compared with PDAC tumor-cells, cancer-associated fibroblasts, and macrophages. Encapsulation of JAK2/STAT3i Ruxolitinib (CXCR2-NP Ruxo ) resulted in more durable attenuation in STAT3-regulated arginase activity from PMN-MDSCs and induction of cytolytic T-cell activity vs. free Ruxolitinib in-vitro and in-vivo . Cell-specific delivery of payloads via CXCR2-homing immunonanoparticles represents a novel strategy to disrupt MDSC-mediated immunosuppression and invigorate antitumor immunity in PDAC.

19.
Proc Natl Acad Sci U S A ; 107(42): 17939-44, 2010 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-20921363

RESUMO

The genomic revolution has identified therapeutic targets for a plethora of diseases, creating a need to develop robust technologies for combination drug therapy. In the present work, we describe a self-assembled polymeric nanoparticle (NP) platform to target and control precisely the codelivery of drugs with varying physicochemical properties to cancer cells. As proof of concept, we codelivered cisplatin and docetaxel (Dtxl) to prostate cancer cells with synergistic cytotoxicity. A polylactide (PLA) derivative with pendant hydroxyl groups was prepared and conjugated to a platinum(IV) [Pt(IV)] prodrug, c,t,c-[Pt(NH(3))(2)(O(2)CCH(2)CH(2)COOH)(OH)Cl(2)] [PLA-Pt(IV)]. A blend of PLA-Pt(IV) functionalized polymer and carboxyl-terminated poly(D,L-lactic-co-glycolic acid)-block-poly(ethylene glycol) copolymer in the presence or absence of Dtxl, was converted, in microfluidic channels, to NPs with a diameter of ∼100 nm. This process resulted in excellent encapsulation efficiency (EE) and high loading of both hydrophilic platinum prodrug and hydrophobic Dtxl with reproducible EEs and loadings. The surface of the NPs was derivatized with the A10 aptamer, which binds to the prostate-specific membrane antigen (PSMA) on prostate cancer cells. These NPs undergo controlled release of both drugs over a period of 48-72 h. Targeted NPs were internalized by the PSMA-expressing LNCaP cells via endocytosis, and formation of cisplatin 1,2-d(GpG) intrastrand cross-links on nuclear DNA was verified. In vitro toxicities demonstrated superiority of the targeted dual-drug combination NPs over NPs with single drug or nontargeted NPs. This work reveals the potential of a single, programmable nanoparticle to blend and deliver a combination of drugs for cancer treatment.


Assuntos
Quimioterapia Combinada , Nanopartículas , Antineoplásicos/administração & dosagem , Antineoplásicos/uso terapêutico , Cisplatino/administração & dosagem , Cisplatino/uso terapêutico , Docetaxel , Eletroquímica , Endocitose , Humanos , Masculino , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Taxoides/administração & dosagem , Taxoides/uso terapêutico
20.
Dalton Trans ; 52(12): 3575-3585, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36723189

RESUMO

The success story of cisplatin spans over six decades now and yet it continues to be the key player in most chemotherapeutic regimens. Numerous efforts have been made to improve its efficacy, address its shortcomings, and overcome drug resistance. One such strategy is to develop new platinum(IV)-based prodrugs with functionally active ligands to deliver combination therapeutics. This strategy not only enables the drug candidate to access multiple drug targets but also enhances the kinetic inertness of platinum complexes and thereby ensures greater accumulation of active drugs at the target site. We report the synthesis of Platin-C, a platinum(IV)-based cisplatin prodrug tethered to the active component of ancient herbal medicine, curcumin, as one of the axial ligands. This combination complex showed improved chemotherapeutic efficacy in cisplatin resistant A2780/CP70 cell lines compared with the individual components. An amine-terminated biodegradable polymer was suitably functionalized with the triphenylphosphonium (TPP) cation to obtain a mitochondria-directed drug delivery platform. Quantification of Platin-C loading into these NPs using complementary techniques employing curcumin optical properties in high-performance liquid chromatography and platinum-based inductively coupled plasma mass spectrometry evidenced efficacious payload incorporation resulting in functional activities of both the components. Stability studies for a period of one week indicated that the NPs remain stable, enabling substantial loading and controlled release of the prodrug. The targeting nanoparticle (NP) platform was utilized to deliver Platin-C primarily in the mitochondrial network of cancer cells as monitored using confocal microscopy employing the green fluorescence of the curcumin pendant. Our studies showed that amine terminated NPs were relatively less efficient in their ability to target mitochondria despite being positively charged. This re-validated the importance of lipophilic positively charged TPP surface functionalities to successfully target cellular mitochondria. We validated the capabilities of Platin-C and its mitochondria-targeting nanoparticles towards inflicting mitochondria-directed activity in cisplatin-sensitive and cisplatin-resistant cell lines. Furthermore, our studies also demonstrated the effectiveness of Platin-C incorporated targeting NPs in attenuating cellular inflammatory markers by utilizing the curcumin component. This study advances our understanding of the cisplatin prodrug approach to combine chemotherapeutic and inflammatory effects in accessing combinatory pathways.


Assuntos
Antineoplásicos , Curcumina , Nanopartículas , Neoplasias Ovarianas , Pró-Fármacos , Humanos , Feminino , Cisplatino/química , Curcumina/farmacologia , Pró-Fármacos/química , Linhagem Celular Tumoral , Neoplasias Ovarianas/tratamento farmacológico , Platina/química , Mitocôndrias , Nanopartículas/química , Antineoplásicos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA