Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 31(Pt 1): 129-135, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38084593

RESUMO

In the realm of X-ray ptychography experiments, a considerable amount of ptychography scans are typically performed within a field of view encompassing the target sample. While it is crucial to obtain overlapping scans in small increments over the region of interest for achieving high-resolution sample reconstruction, a significant number of these scans often redundantly measure the empty background within the wide field of view. To address this inefficiency, an innovative algorithm is proposed that introduces automatic guidance for data acquisition. The algorithm first directs the scan point to actively search for the object of interest within the field of view. Subsequently, it intelligently scans along the perimeter of the sample, strategically acquiring measurements exclusively within the boundary of the region of interest. By employing this approach, a reduction in the number of measurements required to obtain high-resolution reconstruction images is demonstrated, as compared with conventional raster scanning methods. Furthermore, the automatic guidance provided by the algorithm offers the added advantage of saving valuable time during the reconstruction process. Through practical implementation on real experiments, these findings showcase the efficacy of the proposed algorithm in enhancing the efficiency and accuracy of X-ray ptychography experiments. This novel approach holds immense potential for advancing sample analysis and imaging techniques in various scientific disciplines.

2.
Microsc Microanal ; 29(5): 1650-1657, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37639314

RESUMO

Modern electron tomography has progressed to higher resolution at lower doses by leveraging compressed sensing (CS) methods that minimize total variation (TV). However, these sparsity-emphasized reconstruction algorithms introduce tunable parameters that greatly influence the reconstruction quality. Here, Pareto front analysis shows that high-quality tomograms are reproducibly achieved when TV minimization is heavily weighted. However, in excess, CS tomography creates overly smoothed three-dimensional (3D) reconstructions. Adding momentum to the gradient descent during reconstruction reduces the risk of over-smoothing and better ensures that CS is well behaved. For simulated data, the tedious process of tomography parameter selection is efficiently solved using Bayesian optimization with Gaussian processes. In combination, Bayesian optimization with momentum-based CS greatly reduces the required compute time-an 80% reduction was observed for the 3D reconstruction of SrTiO3 nanocubes. Automated parameter selection is necessary for large-scale tomographic simulations that enable the 3D characterization of a wider range of inorganic and biological materials.

3.
Opt Lett ; 44(17): 4331-4334, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31465395

RESUMO

As x-ray microscopy is pushed into the nanoscale with the advent of more bright and coherent x-ray sources, associated improvement in spatial resolution becomes highly vulnerable to geometrical errors and uncertainties during data collection. We address a form of error in tomography experiments, namely, the drift between projections during the tomographic scan. Our proposed method can simultaneously recover the drift, while tomographically reconstructing the specimen based on a joint iterative optimization scheme. This approach utilizes the correlation provided from different view angles and different signals. While generally applicable, we demonstrate our method on x-ray fluorescence tomography from a tissue specimen and compare the reconstruction quality with conventional methods.

6.
Opt Express ; 25(12): 13107-13124, 2017 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-28788848

RESUMO

X-ray fluorescence tomography is based on the detection of fluorescence x-ray photons produced following x-ray absorption while a specimen is rotated; it provides information on the 3D distribution of selected elements within a sample. One limitation in the quality of sample recovery is the separation of elemental signals due to the finite energy resolution of the detector. Another limitation is the effect of self-absorption, which can lead to inaccurate results with dense samples. To recover a higher quality elemental map, we combine x-ray fluorescence detection with a second data modality: conventional x-ray transmission tomography using absorption. By using these combined signals in a nonlinear optimization-based approach, we demonstrate the benefit of our algorithm on real experimental data and obtain an improved quantitative reconstruction of the spatial distribution of dominant elements in the sample. Compared with single-modality inversion based on x-ray fluorescence alone, this joint inversion approach reduces ill-posedness and should result in improved elemental quantification and better correction of self-absorption.

7.
Nat Commun ; 15(1): 3555, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38670945

RESUMO

Measuring the three-dimensional (3D) distribution of chemistry in nanoscale matter is a longstanding challenge for metrological science. The inelastic scattering events required for 3D chemical imaging are too rare, requiring high beam exposure that destroys the specimen before an experiment is completed. Even larger doses are required to achieve high resolution. Thus, chemical mapping in 3D has been unachievable except at lower resolution with the most radiation-hard materials. Here, high-resolution 3D chemical imaging is achieved near or below one-nanometer resolution in an Au-Fe3O4 metamaterial within an organic ligand matrix, Co3O4-Mn3O4 core-shell nanocrystals, and ZnS-Cu0.64S0.36 nanomaterial using fused multi-modal electron tomography. Multi-modal data fusion enables high-resolution chemical tomography often with 99% less dose by linking information encoded within both elastic (HAADF) and inelastic (EDX/EELS) signals. We thus demonstrate that sub-nanometer 3D resolution of chemistry is measurable for a broad class of geometrically and compositionally complex materials.

8.
Sci Rep ; 13(1): 19747, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37957208

RESUMO

X-ray ptychography offers high-resolution imaging of large areas at a high computational cost due to the large volume of data provided. To address the cost issue, we propose a physics-informed unsupervised classification algorithm that is performed prior to reconstruction and removes data outside the region of interest (RoI) based on the multimodal features present in the diffraction patterns. The preprocessing time for the proposed method is inconsequential in contrast to the resource-intensive reconstruction process, leading to an impressive reduction in the data workload to a mere 20% of the initial dataset. This capability consequently reduces computational time dramatically while preserving reconstruction quality. Through further segmentation of the diffraction patterns, our proposed approach can also detect features that are smaller than beam size and correctly classify them as within the RoI.

9.
J Appl Crystallogr ; 54(Pt 2): 386-401, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33953650

RESUMO

Upscaling X-ray nanoimaging to macroscopic specimens has the potential for providing insights across multiple length scales, but its feasibility has long been an open question. By combining the imaging requirements and existing proof-of-principle examples in large-specimen preparation, data acquisition and reconstruction algorithms, the authors provide imaging time estimates for howX-ray nanoimaging can be scaled to macroscopic specimens. To arrive at this estimate, a phase contrast imaging model that includes plural scattering effects is used to calculate the required exposure and corresponding radiation dose. The coherent X-ray flux anticipated from upcoming diffraction-limited light sources is then considered. This imaging time estimation is in particular applied to the case of the connectomes of whole mouse brains. To image the connectome of the whole mouse brain, electron microscopy connectomics might require years, whereas optimized X-ray microscopy connectomics could reduce this to one week. Furthermore, this analysis points to challenges that need to be overcome (such as increased X-ray detector frame rate) and opportunities that advances in artificial-intelligence-based 'smart' scanning might provide. While the technical advances required are daunting, it is shown that X-ray microscopy is indeed potentially applicable to nanoimaging of millimetre- or even centimetre-size specimens.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA