RESUMO
BACKGROUND: Hypoparathyroidism (HypoPT) is characterized by hypocalcemia and undetectable/inappropriately low PTH. Post-surgical HypoPT (PS-HypoPT) is the most common cause. Patients with PS-HypoPT present neuropsychological symptoms, probably due to the PTH deprivation in the central nervous system (CNS). However, these mechanisms are still not elucidated. The aim of this study was to evaluate the effects of PTH deprivation on CNS in an animal model of PS-HypoPT via a cognitive/behavioral assessment approach. METHODS: A surgical rat model of PS-HypoPT was obtained and treated with calcium to maintain normocalcemia. Twenty PS-HypoPT rats and twenty sham-operated controls (Crl) underwent behavioral testing in a Morris Water Maze (MWM), Open Field (OF), and Elevated Plus Maze (EPM). RESULTS: In the MWM, PTx rats showed a higher Escape Latency Time compared to Crl rats (p < 0.05); we observed a statistically significant improvement in the performance (day 1 to 8 p < 0.001), which was less pronounced in PTx group. In the OF test, the time and distance spent in the zone of interest were significantly lower in the PTx group compared with the Crl (p < 0.01 and p < 0.01). In the EPM experiment, the time spent in the close arm was significantly higher in the PTx group compared with the Crl (p < 0.01). CONCLUSIONS: This animal model of PS-HypoPT shows an impairment in spatial memory, which improved after training, and a marked anxiety-like behavior, resembling the condition of patients with PS-HypoPT. Further studies are needed to elucidate mechanisms.
RESUMO
In the present work, the preparation and characterization of quasi-solid polymer electrolyte membranes based on methacrylic monomers and oligomers, with the addition of organic plasticizers and lithium salt, are described. Noticeable improvements in the mechanical properties by reinforcement with natural cellulose hand-sheets or nanoscale microfibrillated cellulose fibers are also demonstrated. The ionic conductivity of the various prepared membranes is very high, with average values approaching 10-3 S cm-1 at ambient temperature. The electrochemical stability window is wide (anodic breakdown voltages > 4.5 V vs. Li in all the cases) along with good cyclability in lithium cells at ambient temperature. The galvanostatic cycling tests are conducted by constructing laboratory-scale lithium cells using LiFePO4 as cathode and lithium metal as anode with the selected polymer electrolyte membrane as the electrolyte separator. The results obtained demonstrate that UV induced radical photo-polymerization is a well suited method for an easy and rapid preparation of easy tunable quasi-solid polymer electrolyte membranes for energy storage devices.