Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Mol Biol Evol ; 41(7)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38865496

RESUMO

Cichlid fishes of the genus Oreochromis (tilapia) are among the most important fish for inland capture fisheries and global aquaculture. Deliberate introductions of non-native species for fisheries improvement and accidental escapees from farms have resulted in admixture with indigenous species. Such hybridization may be detrimental to native biodiversity, potentially leading to genomic homogenization of populations and the loss of important genetic material associated with local adaptation. By contrast, introgression may fuel diversification when combined with ecological opportunity, by supplying novel genetic combinations. To date, the role of introgression in the evolutionary history of tilapia has not been explored. Here we studied both ancient and recent hybridization in tilapia, using whole genome resequencing of 575 individuals from 23 species. We focused on Tanzania, a natural hotspot of tilapia diversity, and a country where hybridization between exotic and native species in the natural environment has been previously reported. We reconstruct the first genome-scale phylogeny of the genus and reveal prevalent ancient gene flow across the Oreochromis phylogeny. This has likely resulted in the hybrid speciation of one species, O. chungruruensis. We identify multiple cases of recent hybridization between native and introduced species in the wild, linked to the use of non-native species in both capture fisheries improvement and aquaculture. This has potential implications for both conservation of wild populations and the development of the global tilapia aquaculture industry.


Assuntos
Hibridização Genética , Filogenia , Animais , Tanzânia , Fluxo Gênico , Ciclídeos/genética , Tilápia/genética
2.
Ann Bot ; 133(2): 349-364, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38097270

RESUMO

BACKGROUND: Bananas and plantains (Musa spp.) are among the most important crops worldwide. The cultivated varieties are vegetatively propagated, so their genetic diversity is essentially fixed over time. Musa acuminata, M. balbisiana and M. schizocarpa have provided the named A, B and S subgenomes that predominantly constitute these varieties. Here we aimed to characterize intergenetic recombination and chromosomal imbalances between these A/B/S subgenomes, which often result in copy-number variants (CNVs) leading to changes in gene dosage and phenotype, in a diverse panel of bananas and plantains. This will allow us to characterize varietal lineages better and identify sources of genetic variation. METHODS: We delimited population structure and clonal lineages in a diverse panel of 188 banana and plantain accessions from the most common cultivars using admixture, principal component and phylogenetic analyses. We used new scalable alignment-based methods, Relative Averaged Alignment (RAA) and Relative Coverage, to infer subgenome composition (AA, AAB, etc.) and interspecific recombination. RESULTS: In our panel, we identified ten varietal lineages composed of somatic clones, plus three groups of tetraploid accessions. We identified chromosomal exchanges resulting in gains/losses in chromosomal segments (CNVs), particularly in AAB and ABB varieties. CONCLUSIONS: We demonstrated alignment-based RAA and Relative Coverage can identify subgenome composition and introgressions with similar results to more complex approaches based on single nucleotide polymorphism (SNP) databases. These ab initio species-agnostic methods can be used without sequencing a panel of wild ancestors to find private SNPs, or in recently diverged pools where private SNPs are uncommon. The extensive A/B/S exchanges and the variation in the length of some introgressions between lineages further support multiple foundational events of hybridization and residual backcrossing. Imbalances between A/B/S may have resulted in CNVs and gene dosage variation. Since most edible banana genomes are fixed on time, these CNVs are stable genetic variations probably associated with phenotypic variation for future genetic studies.


Assuntos
Musa , Filogenia , Musa/genética , Genoma de Planta/genética , Diploide , Recombinação Genética/genética
3.
G3 (Bethesda) ; 14(8)2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-38775627

RESUMO

Bananas (Musa spp.) are an essential fruit worldwide and rank as the fourth most significant food crop for addressing malnutrition due to their rich nutrients and starch content. The potential of their genetic diversity remains untapped due to limited molecular breeding tools. Our study examined a phenotypically diverse group of 124 accessions from the Colombian Musaceae Collection conserved in AGROSAVIA. We assessed 12 traits categorized into morphology, fruit quality, and yield, alongside sequence data. Our sequencing efforts provided valuable insights, with an average depth of about 7× per accession, resulting in 187,133 single-nucleotide polymorphisms (SNPs) against Musa acuminata (A genome) and 220,451 against Musa balbisiana (B genome). Population structure analysis grouped samples into four and five clusters based on the reference genome. By using different association models, we identified marker-trait associations (MTAs). The mixed linear model revealed four MTAs, while the Bayesian-information and linkage-disequilibrium iteratively nested keyway and fixed and random model for circulating probability unification models identified 82 and 70 MTAs, respectively. We identified 38 and 40 candidate genes in linkage proximity to significant MTAs for the A genome and B genome, respectively. Our findings provide insights into the genetic underpinnings of morphology, fruit quality, and yield. Once validated, the SNP markers and candidate genes can potentially drive advancements in genomic-guided breeding strategies to enhance banana crop improvement.


Assuntos
Frutas , Estudo de Associação Genômica Ampla , Musa , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Musa/genética , Frutas/genética , Genoma de Planta , Fenótipo , Desequilíbrio de Ligação , Genes de Plantas , Característica Quantitativa Herdável
4.
Science ; 383(6690): eabn3263, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38422184

RESUMO

Vocal production learning ("vocal learning") is a convergently evolved trait in vertebrates. To identify brain genomic elements associated with mammalian vocal learning, we integrated genomic, anatomical, and neurophysiological data from the Egyptian fruit bat (Rousettus aegyptiacus) with analyses of the genomes of 215 placental mammals. First, we identified a set of proteins evolving more slowly in vocal learners. Then, we discovered a vocal motor cortical region in the Egyptian fruit bat, an emergent vocal learner, and leveraged that knowledge to identify active cis-regulatory elements in the motor cortex of vocal learners. Machine learning methods applied to motor cortex open chromatin revealed 50 enhancers robustly associated with vocal learning whose activity tended to be lower in vocal learners. Our research implicates convergent losses of motor cortex regulatory elements in mammalian vocal learning evolution.


Assuntos
Elementos Facilitadores Genéticos , Eutérios , Evolução Molecular , Regulação da Expressão Gênica , Córtex Motor , Neurônios Motores , Proteínas , Vocalização Animal , Animais , Quirópteros/genética , Quirópteros/fisiologia , Vocalização Animal/fisiologia , Córtex Motor/citologia , Córtex Motor/fisiologia , Cromatina/metabolismo , Neurônios Motores/fisiologia , Laringe/fisiologia , Epigênese Genética , Genoma , Proteínas/genética , Proteínas/metabolismo , Sequência de Aminoácidos , Eutérios/genética , Eutérios/fisiologia , Aprendizado de Máquina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA