Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(1)2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36616854

RESUMO

The performance of microelectromechanical system (MEMS) inertial measurement units (IMUs) is susceptible to many environmental factors. Among different factors, temperature is one of the most challenging issues. This report reveals the bias stability analysis of an ovenized MEMS gyroscope. A micro-heater and a control system exploiting PID/PWM were used to compensate for the bias stability variations of a commercial MEMS IMU from BOSCH "BMI 088". A micro-heater made of gold (Au) thin film is integrated with the commercial MEMS IMU chip. A custom-designed micro-machined glass platform thermally isolates the MEMS IMU from the ambient environment and is vacuum sealed in the leadless chip carrier (LCC) package. The BMI 088 built-in temperature sensor is used for temperature sensing of the device and the locally integrated heater. The experimental results reveal that the bias repeatability of the devices has been improved significantly to achieve the target specifications, making the commercial devices suitable for navigation. Furthermore, the effect of vacuum-packaged and non-vacuum-packaged devices was compared. It was found that the bias repeatability of vacuum-packaged devices was improved by more than 60%.


Assuntos
Utensílios Domésticos , Sistemas Microeletromecânicos , Cultura , Vidro , Ouro
2.
Micromachines (Basel) ; 12(8)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34442524

RESUMO

In this paper, a new design technique is presented to estimate and reduce the cross-axis sensitivity (CAS) in a single-drive multi-axis microelectromechanical systems (MEMS) gyroscope. A simplified single-drive multi-axis MEMS gyroscope, based on a mode-split approach, was analyzed for cross-axis sensitivity using COMSOL Multiphysics. A design technique named the "ratio-matching method" of drive displacement amplitudes and sense frequency differences ratios was proposed to reduce the cross-axis sensitivity. Initially, the cross-axis sensitivities in the designed gyroscope for x and y-axis were calculated to be 0.482% and 0.120%, respectively, having an average CAS of 0.301%. Using the proposed ratio-matching method and design technique, the individual cross-axis sensitivities in the designed gyroscope for x and y-axis were reduced to 0.018% and 0.073%, respectively. While the average CAS was reduced to 0.045%, showing a reduction rate of 85.1%. Moreover, the proposed ratio-matching method for cross-axis sensitivity reduction was successfully validated through simulations by varying the coupling spring position and sense frequency difference variation analyses. Furthermore, the proposed methodology was verified experimentally using fabricated single-drive multi-axis gyroscope.

3.
Micromachines (Basel) ; 11(12)2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33255312

RESUMO

In this paper, a COMSOL Multiphysics-based methodology is presented for evaluation of the microelectromechanical systems (MEMS) gyroscope. The established finite element analysis (FEA) model was successfully validated through a comparison with analytical and Matlab/Simulink analysis results. A simplified single-drive, 3-axis MEMS gyroscope was analyzed using a mode split approach, having a drive resonant frequency of 24,918 Hz, with the x-sense, y-sense, and z-sense being 25,625, 25,886, and 25,806 Hz, respectively. Drive-mode analysis was carried out and a maximum drive-displacement of 4.0 µm was computed for a 0.378 µN harmonic drive force. Mechanical sensitivity was computed at 2000 degrees per second (dps) input angular rate while the scale factor for roll, pitch, and yaw was computed to be 0.014, 0.011, and 0.013 nm/dps, respectively.

4.
Micromachines (Basel) ; 10(6)2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31226741

RESUMO

This paper presents the design, fabrication, and characterization of a highly sensitive, single drive multi-axis gyroscope. The multi-axis gyroscope allows for a wide bandwidth in all three axes (X, Y, Z) and exhibits high linearity. The fabricated multi-axis gyroscope was fabricated with a structural thickness of 30 µm and packaged at 100 mtorr using wafer level packaging. The fabricated multi-axis gyroscope has a small footprint of 1426 × 1426 µm2, making it one of the smallest multi-axis gyroscopes. A custom printed circuit board (PCB) was designed for the evaluation of the multi-axis gyroscope. The experimental results demonstrate that the gyroscope has a high sensitivity of 12.56   µ V / dps ,   17.13   µ V / dps and 25.79   µ V / dps in the roll (X-sense), pitch (Y-sense) and yaw (Z-sense) modes respectively. The scale-factor non-linearity of the gyroscope is less than 0.2 % for roll and pitch mode and 0.001 % for the yaw mode, in the full-scale range of ± 1500   deg / s . The multi-axis gyroscope demonstrates an angle random walk of 2.79   dps / Hz , 2.14   dps / Hz , and   1.42   dps / Hz , for the roll, pitch and yaw rate with the in-run bias stability 1.62   deg / s , 1.14   deg / s and 0.84   deg / s respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA