Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Soc Rev ; 53(5): 2350-2387, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38268469

RESUMO

Organic solar cells (OSCs) have attracted a great deal of attention in the field of clean solar energy due to their advantages of transparency, flexibility, low cost and light weight. Introducing them to the market enables seamless integration into buildings and windows, while also supporting wearable, portable electronics and internet-of-things (IoT) devices. With the development of photovoltaic materials and the optimization of fabrication technology, the power conversion efficiencies (PCEs) of OSCs have rapidly improved and now exceed 20%. However, there is a significant lack of focus on material stability and device lifetime, causing a severe hindrance to commercial applications. In this review, we carefully review important strategies employed to improve the stability of OSCs over the past three years from the perspectives of material design and device engineering. Furthermore, we analyze and discuss the current important progress in terms of air, light, thermal and mechanical stability. Finally, we propose the future research directions to overcome the challenges in achieving highly stable OSCs. We expect that this review will contribute to solving the stability problem of OSCs, eventually paving the way for commercial applications in the near future.

2.
Nano Lett ; 24(26): 8208-8215, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38913825

RESUMO

In the heterostructure of two-dimensional (2D) materials, many novel physics phenomena are strongly dependent on the Moiré superlattice. How to achieve the continuous manipulation of the Moiré superlattice in the same sample is very important to study the evolution of various physical properties. Here, in minimally twisted monolayer-multilayer graphene, we found that bubble-induced strain has a huge impact on the Moiré superlattice. By employing the AFM tip to dynamically and continuously move the nanobubble, we realized the modulation of the Moiré superlattice, like the evolution of regular triangular domains into long strip domain structures with single or double domain walls. We also achieved controllable modulation of the Moiré superlattice by moving multiple nanobubbles and establishing the coupling of nanobubbles. Our work presents a flexible method for continuous and controllable manipulation of Moiré superlattices, which will be widely used to study novel physical properties in 2D heterostructures.

3.
Bioessays ; 44(11): e2200104, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36101513

RESUMO

Many viruses evolved mechanisms for capping the 5'-ends of their plus-strand RNAs as a means of hijacking the eukaryotic messenger RNA (mRNA) splicing/translation machinery. Although capping is critical for replication, the RNAs of these viruses have other essential functions including their requirement to be packaged as either genomes or pre-genomes into progeny viruses. Recent studies indicate that human immunodeficiency virus type-1 (HIV-1) RNAs are segregated between splicing/translation and packaging functions by a mechanism that involves structural sequestration of the 5'-cap. Here, we examined studies reported for other viruses and retrotransposons that require both selective packaging of their RNAs and 5'-RNA capping for host-mediated translation. Our findings suggest that viruses and retrotransposons have evolved multiple mechanisms to control 5'-cap accessibility, consistent with the hypothesis that removal or sequestration of the 5' cap enables packageable RNAs to avoid capture by the cellular RNA processing and translation machinery.


Assuntos
RNA Viral , Retroelementos , Humanos , RNA Viral/genética , RNA Viral/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Processamento Pós-Transcricional do RNA , Splicing de RNA/genética
4.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34493679

RESUMO

HIV-1 selectively packages two copies of its 5'-capped RNA genome (gRNA) during virus assembly, a process mediated by the nucleocapsid (NC) domain of the viral Gag polyprotein and encapsidation signals located within the dimeric 5' leader of the viral RNA. Although residues within the leader that promote packaging have been identified, the determinants of authentic packaging fidelity and efficiency remain unknown. Here, we show that a previously characterized 159-nt region of the leader that possesses all elements required for RNA dimerization, high-affinity NC binding, and packaging in a noncompetitive RNA packaging assay (ΨCES) is unexpectedly poorly packaged when assayed in competition with the intact 5' leader. ΨCES lacks a 5'-tandem hairpin element that sequesters the 5' cap, suggesting that cap sequestration may be important for packaging. Consistent with this hypothesis, mutations within the intact leader that expose the cap without disrupting RNA structure or NC binding abrogated RNA packaging, and genetic addition of a 5' ribozyme to ΨCES to enable cotranscriptional shedding of the 5' cap promoted ΨCES-mediated RNA packaging to wild-type levels. Additional mutations that either block dimerization or eliminate subsets of NC binding sites substantially attenuated competitive packaging. Our studies indicate that packaging is achieved by a bipartite mechanism that requires both sequestration of the 5' cap and exposure of NC binding sites that reside fully within the ΨCES region of the dimeric leader. We speculate that cap sequestration prevents irreversible capture by the cellular RNA processing and translation machinery, a mechanism likely employed by other viruses that package 5'-capped RNA genomes.


Assuntos
Regiões 5' não Traduzidas/genética , Genoma Viral , HIV-1/genética , Capuzes de RNA/metabolismo , RNA Viral/metabolismo , Vírion/fisiologia , Montagem de Vírus , Células HEK293 , Infecções por HIV/virologia , Humanos , Conformação de Ácido Nucleico , Capuzes de RNA/química , Capuzes de RNA/genética , RNA Viral/química , RNA Viral/genética
5.
Angew Chem Int Ed Engl ; 63(18): e202401518, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38459749

RESUMO

The hole-transporting material (HTM), poly (3,4-ethylene dioxythiophene) poly(styrene sulfonate) (PEDOT : PSS), is the most widely used material in the realization of high-efficiency organic solar cells (OSCs). However, the stability of PEDOT : PSS-based OSCs is quite poor, arising from its strong acidity and hygroscopicity. In addition, PEDOT : PSS has an absorption in the infrared region and high highest occupied molecular orbital (HOMO) energy level, thus limiting the enhancement of short-circuit current density (Jsc) and open-circuit voltage (Voc), respectively. Herein, two asymmetric self-assembled molecules (SAMs), namely BrCz and BrBACz, were designed and synthesized as HTM in binary OSCs based on the well-known system of PM6 : Y6, PM6 : eC9, PM6 : L8-BO, and D18 : eC9. Compared with BrCz, BrBACz shows larger dipole moment, deeper work function and lower surface energy. Moreover, BrBACz not only enhances photon harvesting in the active layer, but also minimizes voltage losses as well as improves interface charge extraction/ transport. Consequently, the PM6 : eC9-based binary OSC using BrBACz as HTM exhibits a champion efficiency of 19.70 % with a remarkable Jsc of 29.20 mA cm-2 and a Voc of 0.856 V, which is a record efficiency for binary OSCs so far. In addition, the unencapsulated device maintains 95.0 % of its original efficiency after 1,000 hours of storage at air ambient, indicating excellent long-term stability.

6.
Cell Commun Signal ; 21(1): 175, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37480108

RESUMO

BACKGROUND: The phagocytosis and homeostasis of microglia play an important role in promoting blood clearance and improving prognosis after subarachnoid hemorrhage (SAH). LC3-assocaited phagocytosis (LAP) contributes to the microglial phagocytosis and homeostasis via autophagy-related components. With RNA-seq sequencing, we found potential signal pathways and genes which were important for the LAP of microglia. METHODS: We used an in vitro model of oxyhemoglobin exposure as SAH model in the study. RNA-seq sequencing was performed to seek critical signal pathways and genes in regulating LAP. Bioparticles were used to access the phagocytic ability of microglia. Western blot (WB), immunoprecipitation, quantitative polymerase chain reaction (qPCR) and immunofluorescence were performed to detect the expression change of LAP-related components and investigate the potential mechanisms. RESULTS: In vitro SAH model, there were increased inflammation and decreased phagocytosis in microglia. At the same time, we found that the LAP of microglia was inhibited in all stages. RNA-seq sequencing revealed the importance of P38 MAPK signal pathway and DAPK1 in regulating microglial LAP. P38 was found to regulate the expression of DAPK1, and P38-DAPK1 axis was identified to regulate the LAP and homeostasis of microglia after SAH. Finally, we found that P38-DAPK1 axis regulated expression of BECN1, which indicated the potential mechanism of P38-DAPK1 axis regulating microglial LAP. CONCLUSION: P38-DAPK1 axis regulated the LAP of microglia via BECN1, affecting the phagocytosis and homeostasis of microglia in vitro SAH model. Video Abstract.


Assuntos
Microglia , Hemorragia Subaracnóidea , Humanos , Fagocitose , Autofagia , Inflamação , Proteínas Quinases Associadas com Morte Celular
7.
Nucleic Acids Res ; 49(11): 6511-6528, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34048589

RESUMO

The zinc uptake regulator (Zur) is a member of the Fur (ferric uptake regulator) family transcriptional regulators that plays important roles in zinc homeostasis and virulence of bacteria. Upon zinc perception, Zur binds to the promoters of zinc responsive genes and controls their transcription. However, the mechanism underlying zinc-mediated Zur activation remains unclear. Here we report a 2.2-Å crystal structure of apo Zur from the phytopathogen Xanthomonas campestris pv. campestris (XcZur), which reveals the molecular mechanism that XcZur exists in a closed inactive state before regulatory zinc binding. Subsequently, we present a 1.9-Å crystal structure of holo XcZur, which, by contrast, adopts an open state that has enough capacity to bind DNA. Structural comparison and hydrogen deuterium exchange mass spectrometry (HDX-MS) analyses uncover that binding of a zinc atom in the regulatory site, formed by the hinge region, the dimerization domain and the DNA binding domain, drives a closed-to-open conformational change that is essential for XcZur activation. Moreover, key residues responsible for DNA recognition are identified by site-directed mutagenesis. This work provides important insights into zinc-induced XcZur activation and valuable discussions on the mechanism of DNA recognition.


Assuntos
Proteínas de Bactérias/química , Zinco/química , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , DNA/química , DNA/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Alinhamento de Sequência , Transcrição Gênica , Xanthomonas campestris
8.
Proc Natl Acad Sci U S A ; 117(30): 17737-17746, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32647061

RESUMO

Selective packaging of the HIV-1 genome during virus assembly is mediated by interactions between the dimeric 5'-leader of the unspliced viral RNA and the nucleocapsid (NC) domains of a small number of assembling viral Gag polyproteins. Here, we show that the dimeric 5'-leader contains more than two dozen NC binding sites with affinities ranging from 40 nM to 1.4 µM, and that all high-affinity sites (Kd ≲ 400 nM) reside within a ∼150-nt region of the leader sufficient to promote RNA packaging (core encapsidation signal, ΨCES). The four initial binding sites with highest affinity reside near two symmetrically equivalent three-way junction structures. Unlike the other high-affinity sites, which bind NC with exothermic energetics, binding to these sites occurs endothermically due to concomitant unwinding of a weakly base-paired [UUUU]:[GGAG] helical element. Mutations that stabilize base pairing within this element eliminate NC binding to this site and severely impair RNA packaging into virus-like particles. NMR studies reveal that a recently discovered small-molecule inhibitor of HIV-1 RNA packaging that appears to function by stabilizing the structure of the leader binds directly to the [UUUU]:[GGAG] helix. Our findings suggest a sequential NC binding mechanism for Gag-genome assembly and identify a potential RNA Achilles' heel to which HIV therapeutics may be targeted.


Assuntos
Infecções por HIV/virologia , HIV-1/fisiologia , Nucleocapsídeo/metabolismo , RNA Viral , Sequências Reguladoras de Ácido Ribonucleico , Montagem de Vírus , Sequência de Bases , Sítios de Ligação , Genoma Viral , Conformação de Ácido Nucleico , Proteínas do Nucleocapsídeo/metabolismo , Ligação Proteica
9.
J Neurochem ; 163(5): 419-437, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36269673

RESUMO

Subarachnoid haemorrhage (SAH) has a high rate of disability and mortality. Extremely damaging molecules, including adenosine triphosphate (ATP), are released from extravasated red blood cells and nerve cells, which activate microglia and induce sterile tissue injury and organ dysfunction. P2X purinoceptor 7 (P2X7) is one of the most important purine receptors on the microglial surface and is involved in the proinflammatory activation of microglia. While P2X7 can also affect microglial phagocytosis, the mechanism is not clear. Here, we demonstrated that microglial phagocytosis is progressively impaired under continued BzATP exposure and P2X7 activation. Furthermore, we found that P2X7 activation leads to increased intracellular Ca2+ levels and activates Calcineurin, which dephosphorylates dynamin-related protein 1 (DRP1) S637. The dephosphorylation of DRP1 at S637 leads to increased mitochondrial fission and decreased mitochondrial function, which may be responsible for the decreased microglial phagocytosis. Finally, we pharmacologically inhibited P2X7 activation in mice, which resulted in rescue of mitochondrial function and decreased microglial proliferation, but improved phagocytosis after SAH. Our study confirmed that P2X7 activation after SAH leads to the impairment of microglial phagocytosis through mitochondrial fission and verified that P2X7 inhibition restores microglial phagocytosis both in vitro and in vivo.


Assuntos
Microglia , Fagocitose , Receptores Purinérgicos P2X7 , Hemorragia Subaracnóidea , Animais , Camundongos , Trifosfato de Adenosina/metabolismo , Microglia/metabolismo , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Receptores Purinérgicos P2X7/metabolismo , Hemorragia Subaracnóidea/metabolismo , Humanos
10.
Mol Biol Evol ; 38(10): 4135-4148, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34003286

RESUMO

Horizontal gene transfer (HGT) is a major driving force for bacterial evolution. To avoid the deleterious effects due to the unregulated expression of newly acquired foreign genes, bacteria have evolved specific proteins named xenogeneic silencers to recognize foreign DNA sequences and suppress their transcription. As there is considerable diversity in genomic base compositions among bacteria, how xenogeneic silencers distinguish self- from nonself DNA in different bacteria remains poorly understood. This review summarizes the progress in studying the DNA binding preferences and the underlying molecular mechanisms of known xenogeneic silencer families, represented by H-NS of Escherichia coli, Lsr2 of Mycobacterium, MvaT of Pseudomonas, and Rok of Bacillus. Comparative analyses of the published data indicate that the differences in DNA recognition mechanisms enable these xenogeneic silencers to have clear characteristics in DNA sequence preferences, which are further correlated with different host genomic features. These correlations provide insights into the mechanisms of how these xenogeneic silencers selectively target foreign DNA in different genomic backgrounds. Furthermore, it is revealed that the genomic AT contents of bacterial species with the same xenogeneic silencer family proteins are distributed in a limited range and are generally lower than those species without any known xenogeneic silencers in the same phylum/class/genus, indicating that xenogeneic silencers have multifaceted roles on bacterial genome evolution. In addition to regulating horizontal gene transfer, xenogeneic silencers also act as a selective force against the GC to AT mutational bias found in bacterial genomes and help the host genomic AT contents maintained at relatively low levels.


Assuntos
Proteínas de Bactérias , Proteínas de Ligação a DNA , Proteínas de Bactérias/genética , DNA , DNA Bacteriano , Proteínas de Ligação a DNA/genética , Inativação Gênica , Transferência Genética Horizontal , Genoma Bacteriano , Humanos
11.
J Am Chem Soc ; 143(20): 7688-7697, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-33983734

RESUMO

Methylation of DNA at CpG sites is a major mark for epigenetic regulation, but how transcription factors are influenced by CpG methylation is not well understood. Here, we report the molecular mechanisms of how the TCF (T-cell factor) and GEF (glucose transporter 4 enhancer factor) families of proteins selectively target unmethylated DNA sequences with a C-clamp type zinc finger domain. The structure of the C-clamp domain from human GEF family protein HDBP1 (C-clampHDBP1) in complex with DNA was determined using NMR spectroscopy, which adopts a unique zinc finger fold and selectively binds RCCGG (R = A/G) DNA sequences with an "Arg···Trp-Lys-Lys" DNA recognition motif inserted in the major groove. The CpG base pairs are central to the binding due to multiple hydrogen bonds formed with the backbone carbonyl groups of Trp378 and Lys379, as well as the side chain ε-amino groups of Lys379 and Lys380 from C-clampHDBP1. Consequently, methylation of the CpG dinucleotide almost abolishes the binding. Homology modeling reveals that the C-clamp domain from human TCF1E (C-clampTCF1E) binds DNA through essentially the same mechanism, with a similar "Arg···Arg-Lys-Lys" DNA recognition motif. The substitution of tryptophan by arginine makes C-clampHDBP1 prefer RCCGC DNA sequences. The two signature DNA recognition motifs are invariant in the GEF and TCF families of proteins, respectively, from fly to human. The recognition of the CpG dinucleotide through two consecutive backbone carbonyl groups is the same as that of the CXXC type unmethylated CpG DNA binding domains, suggesting a common mechanism shared by unmethylated CpG binding proteins.


Assuntos
Cisteína/química , DNA/química , Ilhas de CpG , Humanos
12.
J Virol ; 94(5)2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31801870

RESUMO

The assembly of an orthoretrovirus such as HIV-1 requires the coordinated functioning of multiple biochemical activities of the viral Gag protein. These activities include membrane targeting, lattice formation, packaging of the RNA genome, and recruitment of cellular cofactors that modulate assembly. In most previous studies, these Gag activities have been investigated individually, which provided somewhat limited insight into how they functionally integrate during the assembly process. Here, we report the development of a biochemical reconstitution system that allowed us to investigate how Gag lattice formation, RNA binding, and the assembly cofactor inositol hexakisphosphate (IP6) synergize to generate immature virus particles in vitro The results identify an important rate-limiting step in assembly and reveal new insights into how RNA and IP6 promote immature Gag lattice formation. The immature virus-like particles can be converted into mature capsid-like particles by the simple addition of viral protease, suggesting that it is possible in principle to fully biochemically reconstitute the sequential processes of HIV-1 assembly and maturation from purified components.IMPORTANCE Assembly and maturation are essential steps in the replication of orthoretroviruses such as HIV-1 and are proven therapeutic targets. These processes require the coordinated functioning of the viral Gag protein's multiple biochemical activities. We describe here the development of an experimental system that allows an integrative analysis of how Gag's multiple functionalities cooperate to generate a retrovirus particle. Our current studies help to illuminate how Gag synergizes the formation of the virus compartment with RNA binding and how these activities are modulated by the small molecule IP6. Further development and use of this system should lead to a more comprehensive understanding of the molecular mechanisms of HIV-1 assembly and maturation and may provide new insights for the development of antiretroviral drugs.


Assuntos
HIV-1/genética , HIV-1/fisiologia , Montagem de Vírus/genética , Montagem de Vírus/fisiologia , Capsídeo/metabolismo , Humanos , Microscopia Eletrônica , Modelos Moleculares , Ácido Fítico , Vírion/metabolismo , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo
13.
Nucleic Acids Res ; 46(19): 10514-10529, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30252102

RESUMO

Bacterial xenogeneic silencers play important roles in bacterial evolution by recognizing and inhibiting expression from foreign genes acquired through horizontal gene transfer, thereby buffering against potential fitness consequences of their misregulated expression. Here, the detailed DNA binding properties of Rok, a xenogeneic silencer in Bacillus subtilis, was studied using protein binding microarray, and the solution structure of its C-terminal DNA binding domain was determined in complex with DNA. The C-terminal domain of Rok adopts a typical winged helix fold, with a novel DNA recognition mechanism different from other winged helix proteins or xenogeneic silencers. Rok binds the DNA minor groove by forming hydrogen bonds to bases through N154, T156 at the N-terminal of α3 helix and R174 of wing W1, assisted by four lysine residues interacting electrostatically with DNA backbone phosphate groups. These structural features endow Rok with preference towards DNA sequences harboring AACTA, TACTA, and flexible multiple TpA steps, while rigid A-tracts are disfavored. Correspondingly, the Bacillus genomes containing Rok are rich in A-tracts and show a dramatic underrepresentation of AACTA and TACTA, which are significantly enriched in Rok binding regions. These observations suggest that the xenogeneic silencing protein and its resident genome may have evolved cooperatively.


Assuntos
Bacillus subtilis/genética , Proteínas de Bactérias/fisiologia , Regulação Bacteriana da Expressão Gênica , Transferência Genética Horizontal/genética , Proteínas Repressoras/fisiologia , Proteínas de Bactérias/metabolismo , Composição de Bases/fisiologia , Sequência de Bases , Inativação Gênica , Genoma Bacteriano , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Domínios Proteicos , Sequências Repetitivas de Ácido Nucleico , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo
14.
PLoS Pathog ; 11(6): e1004967, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26068099

RESUMO

Bacterial xenogeneic silencing proteins selectively bind to and silence expression from many AT rich regions of the chromosome. They serve as master regulators of horizontally acquired DNA, including a large number of virulence genes. To date, three distinct families of xenogeneic silencers have been identified: H-NS of Proteobacteria, Lsr2 of the Actinomycetes, and MvaT of Pseudomonas sp. Although H-NS and Lsr2 family proteins are structurally different, they all recognize the AT-rich DNA minor groove through a common AT-hook-like motif, which is absent in the MvaT family. Thus, the DNA binding mechanism of MvaT has not been determined. Here, we report the characteristics of DNA sequences targeted by MvaT with protein binding microarrays, which indicates that MvaT prefers binding flexible DNA sequences with multiple TpA steps. We demonstrate that there are clear differences in sequence preferences between MvaT and the other two xenogeneic silencer families. We also determined the structure of the DNA-binding domain of MvaT in complex with a high affinity DNA dodecamer using solution NMR. This is the first experimental structure of a xenogeneic silencer in complex with DNA, which reveals that MvaT recognizes the AT-rich DNA both through base readout by an "AT-pincer" motif inserted into the minor groove and through shape readout by multiple lysine side chains interacting with the DNA sugar-phosphate backbone. Mutations of key MvaT residues for DNA binding confirm their importance with both in vitro and in vivo assays. This novel DNA binding mode enables MvaT to better tolerate GC-base pair interruptions in the binding site and less prefer A tract DNA when compared to H-NS and Lsr2. Comparison of MvaT with other bacterial xenogeneic silencers provides a clear picture that nature has evolved unique solutions for different bacterial genera to distinguish foreign from self DNA.


Assuntos
Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica/genética , Inativação Gênica/fisiologia , Pseudomonas aeruginosa/genética , Relação Estrutura-Atividade , Transativadores/genética , Proteínas de Bactérias/química , Evolução Biológica , Western Blotting , Ensaio de Desvio de Mobilidade Eletroforética , Transferência Genética Horizontal , Ensaios de Triagem em Larga Escala , Espectroscopia de Ressonância Magnética , Análise Serial de Proteínas , Pseudomonas aeruginosa/química , Transativadores/química
15.
Environ Sci Technol ; 51(11): 6298-6307, 2017 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-28485586

RESUMO

Genetic bioaugmentation, in which bacteria harboring conjugative plasmids provide catabolic functions, is a promising strategy to restore dioxin-contaminated environments. Here we examined the conjugative transfer of the dioxin-catabolic plasmids pDF01 and pDF02 harbored by Rhodococcus sp. strain p52. A mating experiment using strain p52 as a donor showed that pDF01 and pDF02 were concomitantly and conjugatively transferred from strain p52 to a Pseudomonas aeruginosa recipient at a conjugation frequency of 3 × 10-4 colonies per recipient. pDF01 and pDF02 were isolated from the P. aeruginosa transconjugant and identified by Southern hybridization, and they were localized in the transconjugant cells by fluorescence in situ hybridization. Moreover, the catabolic plasmids functioned in the transconjugant, which gained the ability to use dibenzofuran and chlorodibenzofuran for growth, and they were maintained in 50% of the transconjugant cells for 30 generations without selective pressure. Furthermore, conjugative transfer of the catabolic plasmids to activated sludge bacteria was detected. Sequencing of pDF01 and pDF02 revealed the genetic basis for the plasmids' conjugative transfer and stable maintenance, as well as their cooperation during dioxin catabolism. Therefore, strain p52 harboring pDF01 and pDF02 has potential for genetic bioaugmentation in dioxin-contaminated environments.


Assuntos
Dioxinas , Plasmídeos , Rhodococcus , Conjugação Genética , Hibridização in Situ Fluorescente
16.
J Acoust Soc Am ; 141(1): 1, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28147597

RESUMO

This paper is concerned with the polarization states of an inhomogenously refracted P-wave induced from the interface of two anisotropic rocks. Two realistic physical models have been studied: Model-1 is an interface between anisotropic shale and Taylor sandstone; Model-2 is an interface between anisotropic shale and oil shale. For each model, an analytical expression of the polarization states was derived and its elliptical-polarization trajectory was examined. It is shown that an anomalous incident-angle leads not only to a sudden elliptical-polarization directional variation but also to an abrupt change in size and shape of its elliptical-polarization trajectory. The calculated results and analyses provide a theoretical base for the understandings of an anomalous incident-angle recently reported in the literature [e.g., Fa, Fa, Zhang, Ding, Gong, Li, Li, Tang, and Zhao (2015). Sci. Rep. 5, 12700].

17.
Proc Natl Acad Sci U S A ; 108(26): 10690-5, 2011 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-21673140

RESUMO

H-NS and Lsr2 are nucleoid-associated proteins from Gram-negative bacteria and Mycobacteria, respectively, that play an important role in the silencing of horizontally acquired foreign DNA that is more AT-rich than the resident genome. Despite the fact that Lsr2 and H-NS proteins are dissimilar in sequence and structure, they serve apparently similar functions and can functionally complement one another. The mechanism by which these xenogeneic silencers selectively target AT-rich DNA has been enigmatic. We performed high-resolution protein binding microarray analysis to simultaneously assess the binding preference of H-NS and Lsr2 for all possible 8-base sequences. Concurrently, we performed a detailed structure-function relationship analysis of their C-terminal DNA binding domains by NMR. Unexpectedly, we found that H-NS and Lsr2 use a common DNA binding mechanism where a short loop containing a "Q/RGR" motif selectively interacts with the DNA minor groove, where the highest affinity is for AT-rich sequences that lack A-tracts. Mutations of the Q/RGR motif abolished DNA binding activity. Netropsin, a DNA minor groove-binding molecule effectively outcompeted H-NS and Lsr2 for binding to AT-rich sequences. These results provide a unified molecular mechanism to explain findings related to xenogeneic silencing proteins, including their lack of apparent sequence specificity but preference for AT-rich sequences. Our findings also suggest that structural information contained within the DNA minor groove is deciphered by xenogeneic silencing proteins to distinguish genetic material that is self from nonself.


Assuntos
Sequência Rica em At , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Conformação de Ácido Nucleico , Sequência de Aminoácidos , Proteínas de Bactérias/química , Sequência de Bases , DNA/química , Proteínas de Ligação a DNA/química , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Homologia de Sequência de Aminoácidos
18.
World Neurosurg ; 183: e22-e27, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37865196

RESUMO

OBJECTIVE: Systemic inflammation following traumatic brain injury (TBI) has been extensively studied over the past decades, as it contributes significantly to the pathophysiological injury mechanisms and subsequent poor outcomes. Systemic immune-inflammation (SII) index is a novel biomarker of systemic inflammatory response. However, its predictive value regarding TBI prognosis in clinical practice remains insufficiently investigated. METHODS: A total of 102 TBI patients admitted to Nanjing Drum Tower Hospital from July 2019 to February 2022 were enrolled. We employed various statistical analyses to evaluate the correlation between inflammatory indicators upon admission and patient prognosis, compared the predictive accuracy of these indicators, and generated receiver operating curve analysis to test their prognostic performance. RESULTS: The SII index, platelet count, absolute lymphocyte count, and neutrophil/lymphocyte ratio (NLR) were capable of distinguishing TBI prognosis according to univariate logistic regression models (P < 0.05). Multivariate logistic regression models revealed that increased SII index, platelet count, and NLR upon admission were independent predictors of poor TBI prognosis (P < 0.05). Receiver operating curve analysis further demonstrated that the SII index (area under the curve = 0.845, 95% confidence interval 0.769-0.921, P = 0.000) exhibited higher predictive ability than the NLR (area under the curve = 0.694, 95% confidence interval 0.591-0.796, P = 0.001). CONCLUSIONS: Our findings suggested that increased SII index during the early stages of TBI was an independent risk factor for poor prognosis with satisfactory predictive value. The SII index provides a reliable, convenient, and cost-effective prognostic model to evaluate systemic inflammation after TBI and identify patients at risk of poor outcomes, thereby offering valuable guidance for clinical practice.


Assuntos
Lesões Encefálicas Traumáticas , Linfócitos , Humanos , Estudos Retrospectivos , Prognóstico , Inflamação , Lesões Encefálicas Traumáticas/diagnóstico
19.
Adv Mater ; 36(28): e2401537, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38768481

RESUMO

In the fabrication of inverted perovskite solar cells (PSCs), the wettability, adsorbability, and compactness of self-assembled monolayers (SAMs) on conductive substrates have critical impacts on the quality of the perovskite films and the defects at the buried perovskite-substrate interface, which control the efficiency and stability of the devices. Herein, three bisphosphonate-anchored indolocarbazole (IDCz)-derived SAMs, IDCz-1, IDCz-2, and IDCz-3, are designed and synthesized by modulating the position of the two nitrogen atoms of the IDCz unit to improve the molecular dipole moments and strengthen the π-π interactions. Regulating the work functions (WF) of FTO electrodes through molecular dipole moments and energy levels, the perovskite band bends upwards with a small offset for ITO/IDCz-3/perovskite, thereby promoting hole extraction and blocking electrons. As a result, the inverted PSC employing IDCz-3 as hole-collecting layer exhibits a champion PCE of 25.15%, which is a record efficiency for the multipodal SAMs-based PSCs. Moreover, the unencapsulated device with IDCz-3 can be stored for at least 1800 h with little degradation in performance.

20.
Free Radic Biol Med ; 210: 416-429, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38042225

RESUMO

BACKGROUND: Menaquinone-4(MK-4), the isoform of vitamin K2 in the brain, exerts neuroprotective effects against a variety of central nervous system disorders. This study aimed to demonstrate the anti-ferroptosis effects of MK-4 in neurons after SAH. METHODS: A subarachnoid hemorrhage (SAH) model was prepared by endovascular perforation in mice. In vitro hemoglobin stimulation of primary cortical neurons mimicked SAH. MK-4, Brequinar (BQR, DHODH inhibitor), and Selisistat (SEL, SIRT1 inhibitor) were administered, respectively. Subsequently, WB, immunofluorescence was used to determine protein expression and localization, and transmission electron microscopy was used to observe neuronal mitochondrial structure while other indicators of ferroptosis were measured. RESULTS: MK-4 treatment significantly upregulated the protein levels of DHODH; decreased GSH, PTGS2, NOX1, ROS, and restored mitochondrial membrane potential. Meanwhile, MK-4 upregulated the expression of SIRT1 and promoted its entry into the nucleus. BQR or SEL partially abolished the protective effect of MK-4 on, neurologic function, and ferroptosis. CONCLUSIONS: Taken together, our results suggest that MK-4 attenuates ferroptosis after SAH by upregulating DHODH through the activation of SIRT1.


Assuntos
Lesões Encefálicas , Ferroptose , Hemorragia Subaracnóidea , Ratos , Camundongos , Animais , Ratos Sprague-Dawley , Di-Hidro-Orotato Desidrogenase , Vitamina K 2/farmacologia , Hemorragia Subaracnóidea/tratamento farmacológico , Hemorragia Subaracnóidea/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Lesões Encefálicas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA