Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Toxins (Basel) ; 16(3)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38535813

RESUMO

The French Society of Toxinology (SFET), which celebrated its 30th anniversary this year, organized its 29th annual Meeting (RT29), shared by 87 participants, on 30 November-1 December 2023. The RT29 main theme, "Toxins: From the Wild to the Lab", focused on research in the field of animal venoms and animal, bacterial, fungal, or plant toxins, from their discovery in nature to their study in the laboratory. The exploration of the functions of toxins, their structures, their molecular or cellular ligands, their mode of action, and their potential therapeutic applications were emphasized during oral communications and posters through three sessions, of which each was dedicated to a secondary theme. A fourth, "miscellaneous" session allowed participants to present recent out-of-theme works. The abstracts of nine invited and 15 selected lectures, those of 24 posters, and the names of the Best Oral Communication and Best Poster awardees, are presented in this report.


Assuntos
Toxinas Biológicas , Animais , Humanos , Laboratórios
2.
Nat Commun ; 15(1): 54, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167790

RESUMO

L-type voltage-gated calcium channels are involved in multiple physiological functions. Currently available antagonists do not discriminate between L-type channel isoforms. Importantly, no selective blocker is available to dissect the role of L-type isoforms Cav1.2 and Cav1.3 that are concomitantly co-expressed in the heart, neuroendocrine and neuronal cells. Here we show that calciseptine, a snake toxin purified from mamba venom, selectively blocks Cav1.2 -mediated L-type calcium currents (ICaL) at concentrations leaving Cav1.3-mediated ICaL unaffected in both native cardiac myocytes and HEK-293T cells expressing recombinant Cav1.2 and Cav1.3 channels. Functionally, calciseptine potently inhibits cardiac contraction without altering the pacemaker activity in sino-atrial node cells, underscoring differential roles of Cav1.2- and Cav1.3 in cardiac contractility and automaticity. In summary, calciseptine is a selective L-type Cav1.2 Ca2+ channel blocker and should be a valuable tool to dissect the role of these L-channel isoforms.


Assuntos
Canais de Cálcio Tipo L , Dendroaspis , Animais , Canais de Cálcio Tipo L/fisiologia , Dendroaspis/metabolismo , Miócitos Cardíacos/metabolismo , Isoformas de Proteínas , Cálcio/metabolismo
3.
J. venom. anim. toxins incl. trop. dis ; 27: e20210026, 2021. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1351023

RESUMO

Pain is a common symptom induced during envenomation by spiders and scorpions. Toxins isolated from their venom have become essential tools for studying the functioning and physiopathological role of ion channels, as they modulate their activity. In particular, toxins that induce pain relief effects can serve as a molecular basis for the development of future analgesics in humans. This review provides a summary of the different scorpion and spider toxins that directly interact with pain-related ion channels, with inhibitory or stimulatory effects. Some of these toxins were shown to affect pain modalities in different animal models providing information on the role played by these channels in the pain process. The close interaction of certain gating-modifier toxins with membrane phospholipids close to ion channels is examined along with molecular approaches to improve selectivity, affinity or bioavailability in vivo for therapeutic purposes.(AU)


Assuntos
Animais , Dor , Escorpiões , Venenos de Aranha , Modelos Animais , Canais Iônicos , Fosfolipídeos , Analgésicos
4.
Artigo em Inglês | LILACS-Express | LILACS, VETINDEX | ID: biblio-1484776

RESUMO

Abstract Pain is a common symptom induced during envenomation by spiders and scorpions. Toxins isolated from their venom have become essential tools for studying the functioning and physiopathological role of ion channels, as they modulate their activity. In particular, toxins that induce pain relief effects can serve as a molecular basis for the development of future analgesics in humans. This review provides a summary of the different scorpion and spider toxins that directly interact with pain-related ion channels, with inhibitory or stimulatory effects. Some of these toxins were shown to affect pain modalities in different animal models providing information on the role played by these channels in the pain process. The close interaction of certain gating-modifier toxins with membrane phospholipids close to ion channels is examined along with molecular approaches to improve selectivity, affinity or bioavailability in vivo for therapeutic purposes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA