Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(22): 221401, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38877922

RESUMO

Leveraging scattering information to describe binary systems in generic orbits requires identifying local and nonlocal in time tail effects. We report here the derivation of the universal (nonspinning) local in time conservative dynamics at fourth post-Minkowskian order, i.e., O(G^{4}). This is achtieved by computing the nonlocal-in-time contribution to the deflection angle, and removing it from the full conservative value in [C. Dlapa et al., Phys. Rev. Lett. 128, 161104 (2022).PRLTAO0031-900710.1103/PhysRevLett.128.161104; C. Dlapa et al., Phys. Rev. Lett. 130, 101401 (2023).PRLTAO0031-900710.1103/PhysRevLett.130.101401]. Unlike the total result, the integration problem involves two scales-velocity and mass ratio-and features multiple polylogarithms, complete elliptic and iterated elliptic integrals, notably in the mass ratio. We reconstruct the local radial action, center-of-mass momentum and Hamiltonian, as well as the exact logarithmic-dependent part(s), all valid for generic orbits. We incorporate the remaining nonlocal terms for ellipticlike motion to sixth post-Newtonian order. The combined Hamiltonian is in perfect agreement in the overlap with the post-Newtonian state of the art. The results presented here provide the most accurate description of gravitationally bound binaries harnessing scattering data to date, readily applicable to waveform modeling.

2.
Phys Rev Lett ; 130(10): 101401, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36962024

RESUMO

We obtain the total impulse in the scattering of nonspinning binaries in general relativity at fourth post-Minkowskian order, i.e., O(G^{4}), including linear, nonlinear, and hereditary radiation-reaction effects. We derive the total radiated spacetime momentum as well as the associated energy flux. The latter can be used to compute gravitational-wave observables for generic (un)bound orbits. We employ the ("in-in") Schwinger-Keldysh worldline effective field theory framework in combination with modern "multiloop" integration techniques from collider physics. The complete results are in agreement with various partial calculations in the post-Minkowskian and post-Newtonian expansion.

3.
Phys Rev Lett ; 128(16): 161104, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35522512

RESUMO

We compute the conservative dynamics of nonspinning binaries at fourth post-Minkowskian order in the large-eccentricity limit, including both potential and radiation-reaction tail effects. This is achieved by obtaining the scattering angle in the worldline effective field theory approach and deriving the bound radial action via analytic continuation. The associated integrals are bootstrapped to all orders in velocities through differential equations, with boundary conditions in the potential and radiation regions. The large angular momentum expansion captures all the local-in-time effects as well as the trademark logarithmic corrections for generic bound orbits. Agreement is found in the overlap with the state of the art in post-Newtonian theory.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA