Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Sleep Res ; : e14143, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38384163

RESUMO

The accuracy of actigraphy for sleep staging is assumed to be poor, but examination is limited. This systematic review aimed to assess the performance of actigraphy in sleep stage classification of adults. A systematic search was performed using MEDLINE, Web of Science, Google Scholar, and Embase databases. We identified eight studies that compared sleep architecture estimates between wrist-worn actigraphy and polysomnography. Large heterogeneity was found with respect to how sleep stages were grouped, and the choice of metrics used to evaluate performance. Quantitative synthesis was not possible, so we performed a narrative synthesis of the literature. From the limited number of studies, we found that actigraphy-based sleep staging had some ability to classify different sleep stages compared with polysomnography.

2.
J Med Internet Res ; 25: e42449, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-39170762

RESUMO

The use of data from smartphones and wearable devices has huge potential for population health research given high device ownership, the range of novel health-relevant data types available from consumer devices, and the frequency and duration over which data are, or could be, collected. Yet the uptake and success of large-scale mobile health research in the last decade has not matched the hyped opportunity. We make the argument that digital person-generated health data is required and necessary to answer many top priority research questions through illustrative examples taken from the James Lind Alliance Priority Setting Partnership. We then summarise the findings from two UK initiatives that considered the challenges and possible solutions for what needs to be done, and in what way, to realise the future opportunities of digital person-generated health data for clinically important population health research. Examples of important areas to be addressed to advance the field include digital inequality and addressing possible selection bias, easy access for researchers to the appropriate data collection tools including how best to harmonise data items, analysis methodology for time series data, methods for patient and public involvement and engagement to optimise recruitment, retention and public trust, and providing greater control of their data to research participants. There is also a major opportunity through the linkage of digital persongenerated health data to routinely-collected data to support novel population health research, bringing together clinician-reported and patient-reported measures. We recognise that well conducted studies need a wide range of diverse challenges to be skilfully addressed in unison: for example, epidemiology, data science and biostatistics, psychometrics, behavioural and social science, software engineering, user interface design, information governance, data management and patient and public involvement and engagement. Consequently, progress would be accelerated by the establishment of a new interdisciplinary community where all relevant and necessary skills are brought together to allow excellence throughout the lifecycle of a research study. This will require a partnership of diverse people, of methods and of technology. Get this right and the synergy has the potential to transform many millions of people's lives for the better.

4.
Med Sci Sports Exerc ; 56(5): 805-812, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38109175

RESUMO

PURPOSE: Hip and knee arthroplasty aims to reduce joint pain and increase functional mobility in patients with osteoarthritis; however, the degree to which arthroplasty is associated with higher physical activity is unclear. The current study sought to assess the association of hip and knee arthroplasty with objectively measured physical activity. METHODS: This cross-sectional study analyzed wrist-worn accelerometer data collected in 2013-2016 from UK Biobank participants (aged 43-78 yr). Multivariable linear regression was performed to assess step count, cadence, overall acceleration, and activity behaviors between nonarthritic controls, end-stage arthritic, and postoperative cohorts, controlling for demographic and behavioral confounders. From a cohort of 94,707 participants with valid accelerometer wear time and complete self-reported data, electronic health records were used to identify 3506 participants having undergone primary or revision hip or knee arthroplasty and 68,389 nonarthritic controls. RESULTS: End-stage hip or knee arthritis was associated with taking 1129 fewer steps per day (95% confidence interval (CI), 811-1447; P < 0.001) and having 5.8 fewer minutes per day (95% CI, 3.0-8.7; P < 0.001) of moderate-to-vigorous activity compared with nonarthritic controls. Unilateral primary hip and knee arthroplasties were associated with 877 (95% CI, 284-1471; P = 0.004) and 893 (95% CI, 232-1554; P = 0.008) more steps than end-stage osteoarthritic participants, respectively. Postoperative unilateral hip arthroplasty participants demonstrated levels of moderate-to-vigorous physical activity and daily step count equivalent to nonarthritic controls. No difference in physical activity was observed between any cohorts in terms of overall acceleration, or time spent in daily light activity, sedentary behavior, or sleep. CONCLUSIONS: Hip and knee arthroplasties are associated with higher levels of physical activity compared with participants with end-stage arthritis. Unilateral hip arthroplasty patients, in particular, demonstrate equivalence to nonarthritic peers at more than 1 yr after surgery.


Assuntos
Artroplastia de Quadril , Artroplastia do Joelho , Osteoartrite do Joelho , Humanos , Estudos Transversais , Exercício Físico , Osteoartrite do Joelho/cirurgia
5.
NPJ Digit Med ; 7(1): 91, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609437

RESUMO

Accurate physical activity monitoring is essential to understand the impact of physical activity on one's physical health and overall well-being. However, advances in human activity recognition algorithms have been constrained by the limited availability of large labelled datasets. This study aims to leverage recent advances in self-supervised learning to exploit the large-scale UK Biobank accelerometer dataset-a 700,000 person-days unlabelled dataset-in order to build models with vastly improved generalisability and accuracy. Our resulting models consistently outperform strong baselines across eight benchmark datasets, with an F1 relative improvement of 2.5-130.9% (median 24.4%). More importantly, in contrast to previous reports, our results generalise across external datasets, cohorts, living environments, and sensor devices. Our open-sourced pre-trained models will be valuable in domains with limited labelled data or where good sampling coverage (across devices, populations, and activities) is hard to achieve.

6.
Lancet Rheumatol ; 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39089297

RESUMO

Common to all inflammatory arthritides, namely rheumatoid arthritis, psoriatic arthritis, axial spondyloarthritis, and juvenile idiopathic arthritis, is a potential for reduced mobility that manifests through joint pain, swelling, stiffness, and ultimately joint damage. Across these conditions, consensus has been reached on the need to capture outcomes related to mobility, such as functional capacity and physical activity, as core domains in randomised controlled trials. Existing endpoints within these core domains rely wholly on self-reported questionnaires that capture patients' perceptions of their symptoms and activities. These questionnaires are subjective, inherently vulnerable to recall bias, and do not capture the granularity of fluctuations over time. Several early adopters have integrated sensor-based digital health technology (DHT)-derived endpoints to measure physical function and activity in randomised controlled trials for conditions including Parkinson's disease, Duchenne's muscular dystrophy, chronic obstructive pulmonary disease, and heart failure. Despite these applications, there have been no sensor-based DHT-derived endpoints in clinical trials recruiting patients with inflammatory arthritis. Borrowing from case studies across medicine, we outline the opportunities and challenges in developing novel sensor-based DHT-derived endpoints that capture the symptoms and disease manifestations most relevant to patients with inflammatory arthritis.

7.
NPJ Digit Med ; 7(1): 86, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769347

RESUMO

Sleep is essential to life. Accurate measurement and classification of sleep/wake and sleep stages is important in clinical studies for sleep disorder diagnoses and in the interpretation of data from consumer devices for monitoring physical and mental well-being. Existing non-polysomnography sleep classification techniques mainly rely on heuristic methods developed in relatively small cohorts. Thus, we aimed to establish the accuracy of wrist-worn accelerometers for sleep stage classification and subsequently describe the association between sleep duration and efficiency (proportion of total time asleep when in bed) with mortality outcomes. We developed a self-supervised deep neural network for sleep stage classification using concurrent laboratory-based polysomnography and accelerometry. After exclusion, 1448 participant nights of data were used for training. The difference between polysomnography and the model classifications on the external validation was 34.7 min (95% limits of agreement (LoA): -37.8-107.2 min) for total sleep duration, 2.6 min for REM duration (95% LoA: -68.4-73.4 min) and 32.1 min (95% LoA: -54.4-118.5 min) for NREM duration. The sleep classifier was deployed in the UK Biobank with 100,000 participants to study the association of sleep duration and sleep efficiency with all-cause mortality. Among 66,214 UK Biobank participants, 1642 mortality events were observed. Short sleepers (<6 h) had a higher risk of mortality compared to participants with normal sleep duration of 6-7.9 h, regardless of whether they had low sleep efficiency (Hazard ratios (HRs): 1.58; 95% confidence intervals (CIs): 1.19-2.11) or high sleep efficiency (HRs: 1.45; 95% CIs: 1.16-1.81). Deep-learning-based sleep classification using accelerometers has a fair to moderate agreement with polysomnography. Our findings suggest that having short overnight sleep confers mortality risk irrespective of sleep continuity.

8.
Med Sci Sports Exerc ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38768076

RESUMO

PURPOSE: Step count is an intuitive measure of physical activity frequently quantified in health-related studies; however, accurate step counting is difficult in the free-living environment, with error routinely above 20% in wrist-worn devices against camera-annotated ground truth. This study aims to describe the development and validation of step count derived from a wrist-worn accelerometer and assess its association with cardiovascular and all-cause mortality in a large prospective cohort. METHODS: We developed and externally validated a self-supervised machine learning step detection model, trained on an open-source and step-annotated free-living dataset. 39 individuals will free-living ground-truth annotated step counts were used for model development. An open-source dataset with 30 individuals was used for external validation. Epidemiological analysis was performed using 75,263 UK Biobank participants without prevalent cardiovascular disease (CVD) or cancer. Cox regression was used to test the association of daily step count with fatal CVD and all-cause mortality after adjustment for potential confounders. RESULTS: The algorithm substantially outperformed reference models (free-living mean absolute percent error of 12.5%, versus 65-231%). Our data indicate an inverse dose-response association, where taking 6,430-8,277 daily steps was associated with 37% [25-48%] and 28% [20-35%] lower risk of fatal CVD and all-cause mortality up to seven years later, compared to those taking fewer steps each day. CONCLUSIONS: We have developed an open and transparent method that markedly improves the measurement of steps in large-scale wrist-worn accelerometer datasets. The application of this method demonstrated expected associations with CVD and all-cause mortality, indicating excellent face validity. This reinforces public health messaging for increasing physical activity and can help lay the groundwork for the inclusion of target step counts in future public health guidelines.

9.
NPJ Digit Med ; 7(1): 33, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347090

RESUMO

Digital measures of health status captured during daily life could greatly augment current in-clinic assessments for rheumatoid arthritis (RA), to enable better assessment of disease progression and impact. This work presents results from weaRAble-PRO, a 14-day observational study, which aimed to investigate how digital health technologies (DHT), such as smartphones and wearables, could augment patient reported outcomes (PRO) to determine RA status and severity in a study of 30 moderate-to-severe RA patients, compared to 30 matched healthy controls (HC). Sensor-based measures of health status, mobility, dexterity, fatigue, and other RA specific symptoms were extracted from daily iPhone guided tests (GT), as well as actigraphy and heart rate sensor data, which was passively recorded from patients' Apple smartwatch continuously over the study duration. We subsequently developed a machine learning (ML) framework to distinguish RA status and to estimate RA severity. It was found that daily wearable sensor-outcomes robustly distinguished RA from HC participants (F1, 0.807). Furthermore, by day 7 of the study (half-way), a sufficient volume of data had been collected to reliably capture the characteristics of RA participants. In addition, we observed that the detection of RA severity levels could be improved by augmenting standard patient reported outcomes with sensor-based features (F1, 0.833) in comparison to using PRO assessments alone (F1, 0.759), and that the combination of modalities could reliability measure continuous RA severity, as determined by the clinician-assessed RAPID-3 score at baseline (r2, 0.692; RMSE, 1.33). The ability to measure the impact of the disease during daily life-through objective and remote digital outcomes-paves the way forward to enable the development of more patient-centric and personalised measurements for use in RA clinical trials.

10.
Digit Health ; 10: 20552076241238133, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601188

RESUMO

Introduction: Remote monitoring technologies (RMTs) can measure cognitive and functional decline objectively at-home, and offer opportunities to measure passively and continuously, possibly improving sensitivity and reducing participant burden in clinical trials. However, there is skepticism that age and cognitive or functional impairment may render participants unable or unwilling to comply with complex RMT protocols. We therefore assessed the feasibility and usability of a complex RMT protocol in all syndromic stages of Alzheimer's disease and in healthy control participants. Methods: For 8 weeks, participants (N = 229) used two activity trackers, two interactive apps with either daily or weekly cognitive tasks, and optionally a wearable camera. A subset of participants participated in a 4-week sub-study (N = 45) using fixed at-home sensors, a wearable EEG sleep headband and a driving performance device. Feasibility was assessed by evaluating compliance and drop-out rates. Usability was assessed by problem rates (e.g., understanding instructions, discomfort, forgetting to use the RMT or technical problems) as discussed during bi-weekly semi-structured interviews. Results: Most problems were found for the active apps and EEG sleep headband. Problem rates increased and compliance rates decreased with disease severity, but the study remained feasible. Conclusions: This study shows that a highly complex RMT protocol is feasible, even in a mild-to-moderate AD population, encouraging other researchers to use RMTs in their study designs. We recommend evaluating the design of individual devices carefully before finalizing study protocols, considering RMTs which allow for real-time compliance monitoring, and engaging the partners of study participants in the research.

11.
medRxiv ; 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38168300

RESUMO

Importance: The influence of total daily and light intensity activity on cancer risk remains unclear, as most existing knowledge is drawn from studies relying on self-reported leisure-time activities of moderate-vigorous intensity. Objective: To investigate associations between total daily activity, including step counts, and activity intensity on incident cancer risk. Design Setting and Participants: Prospective analysis of cancer-free UK Biobank participants who wore accelerometers for 7-days (between 2013-2015), followed for cancer incidence through national registries (mean follow-up 5.8 years (SD=1.3)). Exposures: Time-series machine learning models derived daily total activity (average acceleration), behaviour time, step counts, and peak 30-minute cadence from wrist-based accelerometer data. Main Outcomes and Measures: A composite cancer outcome of 13 cancers previously associated with low physical activity (bladder, breast, colon, endometrial, oesophageal adenocarcinoma, gastric cardia, head and neck, kidney, liver, lung, myeloid leukaemia, myeloma, and rectum) based on previous studies of self-reported activity. Cox proportional hazards regression models estimated hazard ratios (HR) and 95% confidence intervals (CI), adjusted for age, sex, ethnicity, smoking, alcohol, education, Townsend Deprivation Index, and reproductive factors. Associations of reducing sedentary time in favour of increased light and moderate-vigorous activity were examined using compositional data analyses. Results: Among 86 556 participants (mean age 62.0 years (SD=7.9) at accelerometer assessment), 2 669 cancers occurred. Higher total physical activity was associated with a lower overall cancer risk (HR1SD=0.85, [95%CI 0.81-0.89]). On average, reallocating one hour/day from sedentary behaviour to moderate-vigorous physical activity was associated with a lower risk (HR=0.92, [0.89-0.95]), as was reallocating one hour/day to light-intensity physical activity (HR=0.94, [0.92-0.96]). Compared to individuals taking 5 000 daily steps, those who took 9 000 steps had an 18% lower risk of physical-activity-related cancer (HR=0.82, [0.74-0.90]). We found no significant association with peak 30-minute cadence after adjusting for total steps. Conclusion and Relevance: Higher total daily physical activity and less sedentary time, in favour of both light and moderate-vigorous intensity activity, were associated with a lower risk of certain cancers. For less active adults, increasing step counts by 4 000 daily steps may be a practical public health intervention for lowering the risk of some cancers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA