Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(4): e2209964120, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36669111

RESUMO

Sonic hedgehog signaling regulates processes of embryonic development across multiple tissues, yet factors regulating context-specific Shh signaling remain poorly understood. Exome sequencing of families with polymicrogyria (disordered cortical folding) revealed multiple individuals with biallelic deleterious variants in TMEM161B, which encodes a multi-pass transmembrane protein of unknown function. Tmem161b null mice demonstrated holoprosencephaly, craniofacial midline defects, eye defects, and spinal cord patterning changes consistent with impaired Shh signaling, but were without limb defects, suggesting a CNS-specific role of Tmem161b. Tmem161b depletion impaired the response to Smoothened activation in vitro and disrupted cortical histogenesis in vivo in both mouse and ferret models, including leading to abnormal gyration in the ferret model. Tmem161b localizes non-exclusively to the primary cilium, and scanning electron microscopy revealed shortened, dysmorphic, and ballooned ventricular zone cilia in the Tmem161b null mouse, suggesting that the Shh-related phenotypes may reflect ciliary dysfunction. Our data identify TMEM161B as a regulator of cerebral cortical gyration, as involved in primary ciliary structure, as a regulator of Shh signaling, and further implicate Shh signaling in human gyral development.


Assuntos
Furões , Proteínas Hedgehog , Animais , Feminino , Humanos , Camundongos , Gravidez , Sistema Nervoso Central/metabolismo , Cílios/genética , Cílios/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Camundongos Knockout , Transdução de Sinais
2.
Development ; 149(9)2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35531980

RESUMO

The endocardium plays important roles in the development and function of the vertebrate heart; however, few molecular markers of this tissue have been identified and little is known about what regulates its differentiation. Here, we describe the Gt(SAGFF27C); Tg(4xUAS:egfp) line as a marker of endocardial development in zebrafish. Transcriptomic comparison between endocardium and pan-endothelium confirms molecular distinction between these populations and time-course analysis suggests differentiation as early as eight somites. To investigate what regulates endocardial identity, we employed npas4l, etv2 and scl loss-of-function models. Endocardial expression is lost in npas4l mutants, significantly reduced in etv2 mutants and only modestly affected upon scl loss-of-function. Bmp signalling was also examined: overactivation of Bmp signalling increased endocardial expression, whereas Bmp inhibition decreased expression. Finally, epistasis experiments showed that overactivation of Bmp signalling was incapable of restoring endocardial expression in etv2 mutants. By contrast, overexpression of either npas4l or etv2 was sufficient to rescue endocardial expression upon Bmp inhibition. Together, these results describe the differentiation of the endocardium, distinct from vasculature, and place npas4l and etv2 downstream of Bmp signalling in regulating its differentiation.


Assuntos
Endocárdio , Peixe-Zebra , Animais , Endocárdio/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Transdução de Sinais/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
3.
Mamm Genome ; 34(2): 270-275, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37222785

RESUMO

Transmembrane protein 161b (Tmem161b) was recently identified in multiple high-through-put phenotypic screens, including in fly, zebrafish, and mouse. In zebrafish, Tmem161b was identified as an essential regulator of cardiac rhythm. In mouse, Tmem161b shows conserved function in regulating cardiac rhythm but has also been shown to impact cardiac morphology. Homozygous or heterozygous missense mutations have also recently been reported for TMEM161B in patients with structural brain malformations, although its significance in the human heart remains to be determined. Across the three model organisms studied to date (fly, fish, and mouse), Tmem161b loss of function is implicated in intracellular calcium ion handling, which may explain the diverse phenotypes observed. This review summarises the current knowledge of this conserved and functionally essential protein in the context of cardiac biology.


Assuntos
Coração , Peixe-Zebra , Animais , Camundongos , Heterozigoto , Homozigoto , Mutação de Sentido Incorreto , Peixe-Zebra/genética , Dípteros
4.
Dev Biol ; 394(2): 217-27, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25169192

RESUMO

The development of stem cell daughters into the differentiated state normally requires a cascade of proliferation and differentiation steps that are typically regulated by external signals. The germline cells of most animals, in specific, are associated with somatic support cells and depend on them for normal development. In the male gonad of Drosophila melanogaster, germline cells are completely enclosed by cytoplasmic extensions of somatic cyst cells, and these cysts form a functional unit. Signaling from the germline to the cyst cells via the Epidermal Growth Factor Receptor (EGFR) is required for germline enclosure and has been proposed to provide a temporal signature promoting early steps of differentiation. A temperature-sensitive allele of the EGFR ligand Spitz (Spi) provides a powerful tool for probing the function of the EGRF pathway in this context and for identifying other pathways regulating cyst differentiation via genetic interaction studies. Using this tool, we show that signaling via the Ecdysone Receptor (EcR), a known regulator of developmental timing during larval and pupal development, opposes EGF signaling in testes. In spi mutant animals, reducing either Ecdysone synthesis or the expression of Ecdysone signal transducers or targets in the cyst cells resulted in a rescue of cyst formation and cyst differentiation. Despite of this striking effect in the spi mutant background and the expression of EcR signaling components within the cyst cells, activity of the EcR pathway appears to be dispensable in a wildtype background. We propose that EcR signaling modulates the effects of EGFR signaling by promoting an undifferentiated state in early stage cyst cells.


Assuntos
Drosophila melanogaster/embriologia , Receptores ErbB/metabolismo , Receptores de Esteroides/metabolismo , Transdução de Sinais/fisiologia , Testículo/citologia , Animais , Diferenciação Celular/fisiologia , Primers do DNA/genética , Proteínas de Drosophila/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Microscopia de Fluorescência , Reação em Cadeia da Polimerase Via Transcriptase Reversa
5.
iScience ; 27(7): 110198, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39092172

RESUMO

Male subfertility or infertility is a common condition often characterized by men producing a low number of sperm with poor quality. To gain insight into this condition, we performed a quantitative proteomic analysis of semen samples obtained from infertile and fertile men. At least 6 proteins showed significant differences in regulation of alternatively spliced isoforms. To investigate this link between aberrant alternative splicing and production of poor-quality spermatozoa, we overexpressed the hnrnpH/F-orthologue Glorund (Glo) in Drosophila, which was also found to be abundant in poor quality human sperm. Transgenic animals produced low numbers of morphologically defective spermatozoa and aberrant formation of the "dense body," an organelle akin to the mammalian manchette. Furthermore, fertility trials demonstrated that transgenic flies were either completely infertile or highly subfertile. These findings suggest that dysregulation of hnrnpH/F is likely to result in the production of low-quality semen, leading to subfertility or infertility in men.

6.
Cell Death Discov ; 8(1): 455, 2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36371343

RESUMO

The Drosophila ovary is regenerated from germline and somatic stem cell populations that have provided fundamental conceptual understanding on how adult stem cells are regulated within their niches. Recent ovarian transcriptomic studies have failed to identify mRNAs that are specific to follicle stem cells (FSCs), suggesting that their fate may be regulated post-transcriptionally. We have identified that the RNA-binding protein, Musashi (Msi) is required for maintaining the stem cell state of FSCs. Loss of msi function results in stem cell loss, due to a change in differentiation state, indicated by upregulation of Lamin C in the stem cell population. In msi mutant ovaries, Lamin C upregulation was also observed in posterior escort cells that interact with newly formed germ cell cysts. Mutant somatic cells within this region were dysfunctional, as evidenced by the presence of germline cyst collisions, fused egg chambers and an increase in germ cell cyst apoptosis. The msi locus produces two classes of mRNAs (long and short). We show that FSC maintenance and escort cell function specifically requires the long transcripts, thus providing the first evidence of isoform-specific regulation in a population of Drosophila epithelial cells. We further demonstrate that although male germline stem cells have previously been shown to require Msi function to prevent differentiation this is not the case for female germline stem cells, indicating that these similar stem cell types have different requirements for Msi, in addition to the differential use of Msi isoforms between soma and germline. In summary, we show that different isoforms of the Msi RNA-binding protein are expressed in specific cell populations of the ovarian stem cell niche where Msi regulates stem cell differentiation, niche cell function and subsequent germ cell survival and differentiation.

7.
Nat Commun ; 12(1): 28, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33397924

RESUMO

SOX (SRY-related HMG-box) transcription factors perform critical functions in development and cell differentiation. These roles depend on precise nuclear trafficking, with mutations in the nuclear targeting regions causing developmental diseases and a range of cancers. SOX protein nuclear localization is proposed to be mediated by two nuclear localization signals (NLSs) positioned within the extremities of the DNA-binding HMG-box domain and, although mutations within either cause disease, the mechanistic basis has remained unclear. Unexpectedly, we find here that these two distantly positioned NLSs of SOX2 contribute to a contiguous interface spanning 9 of the 10 ARM domains on the nuclear import adapter IMPα3. We identify key binding determinants and show this interface is critical for neural stem cell maintenance and for Drosophila development. Moreover, we identify a structural basis for the preference of SOX2 binding to IMPα3. In addition to defining the structural basis for SOX protein localization, these results provide a platform for understanding how mutations and post-translational modifications within these regions may modulate nuclear localization and result in clinical disease, and also how other proteins containing multiple NLSs may bind IMPα through an extended recognition interface.


Assuntos
Núcleo Celular/metabolismo , Fatores de Transcrição SOXB1/química , Fatores de Transcrição SOXB1/metabolismo , Transporte Ativo do Núcleo Celular , Sequência de Aminoácidos , Animais , Drosophila/metabolismo , Células HEK293 , Humanos , Camundongos , Modelos Moleculares , Proteínas Mutantes/metabolismo , Células-Tronco Neurais/metabolismo , Sinais de Localização Nuclear/metabolismo , Mutação Puntual/genética , Ligação Proteica , Domínios Proteicos , Isoformas de Proteínas/metabolismo , Fatores de Transcrição SOXB1/genética , Relação Estrutura-Atividade
8.
Stem Cell Reports ; 7(6): 1152-1163, 2016 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-27974223

RESUMO

The Drosophila testis has been fundamental to understanding how stem cells interact with their endogenous microenvironment, or niche, to control organ growth in vivo. Here, we report the identification of two independent alleles for the highly conserved tumor suppressor gene, Retinoblastoma-family protein (Rbf), in a screen for testis phenotypes in X chromosome third-instar lethal alleles. Rbf mutant alleles exhibit overproliferation of spermatogonial cells, which is phenocopied by the molecularly characterized Rbf11 null allele. We demonstrate that Rbf promotes cell-cycle exit and differentiation of the somatic and germline stem cells of the testes. Intriguingly, depletion of Rbf specifically in the germline does not disrupt stem cell differentiation, rather Rbf loss of function in the somatic lineage drives overproliferation and differentiation defects in both lineages. Together our observations suggest that Rbf in the somatic lineage controls germline stem cell renewal and differentiation non-autonomously via essential roles in the microenvironment of the germline lineage.


Assuntos
Linhagem da Célula , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Proteína do Retinoblastoma/metabolismo , Espermatogênese , Células-Tronco/citologia , Testículo/citologia , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Células Germinativas/citologia , Células Germinativas/metabolismo , Larva , Masculino , Mutação/genética , Nicho de Células-Tronco , Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA