Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(17)2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39273121

RESUMO

Traumatic spinal cord injury (tSCI) has complex pathophysiological events that begin after the initial trauma. One such event is fibroglial scar formation by fibroblasts and reactive astrocytes. A strong inhibition of axonal growth is caused by the activated astroglial cells as a component of fibroglial scarring through the production of inhibitory molecules, such as chondroitin sulfate proteoglycans or myelin-associated proteins. Here, we used neural precursor cells (aldynoglia) as promoters of axonal growth and a fibrin hydrogel gelled under alkaline conditions to support and guide neuronal cell growth, respectively. We added Tol-51 sulfoglycolipid as a synthetic inhibitor of astrocyte and microglia in order to test its effect on the axonal growth-promoting function of aldynoglia precursor cells. We obtained an increase in GFAP expression corresponding to the expected glial phenotype for aldynoglia cells cultured in alkaline fibrin. In co-cultures of dorsal root ganglia (DRG) and aldynoglia, the axonal growth promotion of DRG neurons by aldynoglia was not affected. We observed that the neural precursor cells first clustered together and then formed niches from which aldynoglia cells grew and connected to groups of adjacent cells. We conclude that the combination of alkaline fibrin with synthetic sulfoglycolipid Tol-51 increased cell adhesion, cell migration, fasciculation, and axonal growth capacity, promoted by aldynoglia cells. There was no negative effect on the behavior of aldynoglia cells after the addition of sulfoglycolipid Tol-51, suggesting that a combination of aldynoglia plus alkaline fibrin and Tol-51 compound could be useful as a therapeutic strategy for tSCI repair.


Assuntos
Axônios , Fibrina , Gânglios Espinais , Animais , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Gânglios Espinais/citologia , Axônios/metabolismo , Axônios/efeitos dos fármacos , Fibrina/metabolismo , Hidrogéis/química , Hidrogéis/farmacologia , Ratos , Glicolipídeos/farmacologia , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/patologia , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Medula Espinal/metabolismo , Medula Espinal/efeitos dos fármacos , Medula Espinal/citologia , Movimento Celular/efeitos dos fármacos
2.
Mar Drugs ; 21(2)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36827132

RESUMO

Brain-derived neurotrophic factor (BDNF) regulates dendritic branching and dendritic spine morphology, as well as synaptic plasticity and long-term potentiation. Consequently, BDNF deficiency has been associated with some neurological disorders such as Alzheimer's, Parkinson's or Huntington's diseases. In contrast, elevated BDNF levels correlate with recovery after traumatic central nervous system (CNS) injuries. The utility of BDNF as a therapeutic agent is limited by its short half-life in a pathological microenvironment and its low efficacy caused by unwanted consumption of non-neuronal cells or inappropriate dosing. Here, we tested the activity of chitosan microsphere-encapsulated BDNF to prevent clearance and prolong the efficacy of this neurotrophin. Neuritic growth activity of BDNF release from chitosan microspheres was observed in the PC12 rat pheochromocytoma cell line, which is dependent on neurotrophins to differentiate via the neurotrophin receptor (NTR). We obtained a rapid and sustained increase in neuritic out-growth of cells treated with BDNF-loaded chitosan microspheres over control cells (p < 0.001). The average of neuritic out-growth velocity was three times higher in the BDNF-loaded chitosan microspheres than in the free BDNF. We conclude that the slow release of BDNF from chitosan microspheres enhances signaling through NTR and promotes axonal growth in neurons, which could constitute an important therapeutic agent in neurodegenerative diseases and CNS lesions.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Quitosana , Ratos , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Quitosana/metabolismo , Microesferas , Neurônios/metabolismo , Plasticidade Neuronal
3.
Int J Mol Sci ; 24(18)2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37762251

RESUMO

Spinal cord injury is a traumatic lesion that causes a catastrophic condition in patients, resulting in neuronal deficit and loss of motor and sensory function. That loss is caused by secondary injury events following mechanical damage, which results in cell death. One of the most important events is inflammation, which activates molecules like proinflammatory cytokines (IL-1ß, IFN-γ, and TNF-α) that provoke a toxic environment, inhibiting axonal growth and exacerbating CNS damage. As there is no effective treatment, one of the developed therapies is neuroprotection of the tissue to preserve healthy tissue. Among the strategies that have been developed are the use of cell therapy, the use of peptides, and molecules or supplements that have been shown to favor an anti-inflammatory environment that helps to preserve tissue and cells at the site of injury, thus favoring axonal growth and improved locomotor function. In this review, we will explain some of these strategies used in different animal models of spinal cord injury, their activity as modulators of the immune system, and the benefits they have shown.


Assuntos
Traumatismos da Medula Espinal , Animais , Humanos , Traumatismos da Medula Espinal/tratamento farmacológico , Inflamação/patologia , Neurônios/metabolismo , Anti-Inflamatórios/uso terapêutico , Citocinas/metabolismo , Medula Espinal/metabolismo , Recuperação de Função Fisiológica/fisiologia
4.
J Immunol ; 196(3): 1102-7, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26718337

RESUMO

Guillain-Barré syndrome (GBS) is an immune-mediated peripheral neuropathy. The goal of this research was the identification of biomarkers associated with recovery from GBS. In this study, we compared the transcriptome of PBMCs from a GBS patient and her healthy twin to discover possible correlates of disease progression and recovery. The study was then extended using GBS and spinal cord injury unrelated patients with similar medications and healthy individuals. The early growth response gene-2 (EGR2) was upregulated in GBS patients during disease recovery. The results provided evidence for the implication of EGR2 in GBS and suggested a role for EGR2 in the regulation of IL-17, IL-22, IL-28A, and TNF-ß cytokines in GBS patients. These results identified biomarkers associated with GBS recovery and suggested that EGR2 overexpression has a pivotal role in the downregulation of cytokines implicated in the pathophysiology of this acute neuropathy.


Assuntos
Biomarcadores/análise , Proteína 2 de Resposta de Crescimento Precoce/biossíntese , Síndrome de Guillain-Barré/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Citocinas/biossíntese , Proteína 2 de Resposta de Crescimento Precoce/imunologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase em Tempo Real , Recuperação de Função Fisiológica , Transcriptoma , Regulação para Cima , Adulto Jovem
5.
Anal Bioanal Chem ; 410(16): 3649-3660, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29671028

RESUMO

Therapeutic options for spinal cord injuries are severely limited; current treatments only offer symptomatic relief and rehabilitation focused on educating the individual on how to adapt to their new situation to make best possible use of their remaining function. Thus, new approaches are needed, and interest in the development of effective strategies to promote the repair of neural tracts in the central nervous system inspired us to prepare functional and highly anisotropic polymer scaffolds. In this work, an initial assessment of the behavior of rat neural progenitor cells (NPCs) seeded on poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) fiber scaffolds using synchrotron-based infrared microspectroscopy (SIRMS) is described. Combined with a modified touch imprint cytology sample preparation method, this application of SIRMS enabled the biochemical profiles of NPCs on the coated polymer fibers to be determined. The results showed that changes in the lipid and amide I-II spectral regions are modulated by the type and coating of the substrate used and the culture time. SIRMS studies can provide valuable insight into the early-stage response of NPCs to the morphology and surface chemistry of a biomaterial, and could therefore be a useful tool in the preparation and optimization of cellular scaffolds. Graphical abstract Synchrotron IR microspectroscopy can provide insight into the response of neural progenitor cells to synthetic scaffolds.


Assuntos
Ácido 3-Hidroxibutírico/química , Caproatos/química , Células-Tronco Embrionárias/química , Células-Tronco Embrionárias/citologia , Poliésteres/química , Alicerces Teciduais/química , Animais , Células Cultivadas , Nanofibras/química , Neurogênese , Ratos , Ratos Wistar , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
6.
Glia ; 63(6): 987-1004, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25731131

RESUMO

The study of factors that regulate the survival, proliferation, and differentiation of neural precursor cells (NPCs) is essential to understand neural development as well as brain regeneration. The Nuclear Factor of Activated T Cells (NFAT) is a family of transcription factors that can affect these processes besides playing key roles during development, such as stimulating axonal growth in neurons, maturation of immune system cells, heart valve formation, and differentiation of skeletal muscle and bone. Interestingly, NFAT signaling can also promote cell differentiation in adults, participating in tissue regeneration. The goal of the present study is to evaluate the expression of NFAT isoforms in NPCs, and to investigate its possible role in NPC survival, proliferation, migration, and differentiation. Our findings indicate that NFAT proteins are active not only in neurogenic brain regions such as hippocampus and subventricular zone (SVZ), but also in cultured NPCs. The inhibition of NFAT activation with the peptide VIVIT reduced neurosphere size and cell density in NPC cultures by decreasing proliferation and increasing cell death. VIVIT also decreased NPC migration and differentiation of astrocytes and neurons from NPCs. In addition, we identified NFATc3 as a predominant NFAT isoform in NPC cultures, finding that a constitutively-active form of NFATc3 expressed by adenoviral infection reduces NPC proliferation, stimulates migration, and is a potent inducer of NPC differentiation into astrocytes and neurons. In summary, our work uncovers active roles for NFAT signaling in NPC survival, proliferation and differentiation, and highlights its therapeutic potential for tissue regeneration.


Assuntos
Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Sobrevivência Celular/fisiologia , Fatores de Transcrição NFATC/metabolismo , Células-Tronco Neurais/fisiologia , Neurogênese/fisiologia , Animais , Animais Recém-Nascidos , Astrócitos/metabolismo , Encéfalo/crescimento & desenvolvimento , Encéfalo/fisiologia , Adesão Celular/fisiologia , Morte Celular/fisiologia , Células Cultivadas , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Isoformas de Proteínas , RNA Mensageiro/metabolismo , Transdução de Sinais , Nicho de Células-Tronco/fisiologia
7.
Arch Med Res ; 55(1): 102935, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38157747

RESUMO

Traumatic spinal cord injury (SCI) results in partial or complete motor deficits, such as paraplegia, tetraplegia, and sphincter control, as well as sensory disturbances and autonomic dysregulation such as arterial hypotension, lack of sweating, and alterations in skin lability. All this has a strong psychological impact on the affected person and his/her family, as well as costs to healthcare institutions with an economic burden in the short, medium, and long terms. Despite at least forty years of experimental animal studies and several clinical trials with different therapeutic strategies, effective therapy is not universally accepted. Most of the published works on acute and chronic injury use a single treatment, such as medication, trophic factor, transplant of a cell type, and so on, to block some secondary injury mechanisms or promote some mechanisms of structural/functional restoration. However, despite significant results in experimental models, the outcome is a moderate improvement in muscle strength, sensation, or eventually in sphincter control, which has been considered non-significant in human clinical trials. Here we present a brief compilation of successful individual treatments that have been applied to secondary mechanisms of action. These studies show limited neuroprotective or neurorestorative approaches in animal models and clinical trials. Thus, the few benefits achieved so far represent a rationale to further explore other strategies that seek better structural and functional restoration of the injured spinal cord.


Assuntos
Traumatismos da Medula Espinal , Humanos , Animais , Feminino , Masculino , Traumatismos da Medula Espinal/terapia , Quadriplegia
8.
Pharmaceutics ; 16(8)2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39204381

RESUMO

Cancer and bacterial infections rank among the most significant global health threats. accounting for roughly 25 million fatalities each year. This statistic underscores the urgent necessity for developing novel drugs, enhancing current treatments, and implementing systems that boost their bioavailability to achieve superior therapeutic outcomes. Liposomes have been recognised as effective carriers; nonetheless, they encounter issues with long-term stability and structural integrity, which limit their pharmaceutical applicability. Chitosomes (chitosan-coated liposomes) are generally a good alternative to solve these issues. This research aims to demonstrate the effective individual encapsulation of ciprofloxacin (antibacterial, hydrophilic) and etoposide (anticancer, hydrophobic), within chitosomes to create more effective drug delivery systems (oral administration for ciprofloxacin, parenteral administration for etoposide). Thus, liposomes and chitosomes were prepared using the thin-film hydration technique and were characterised through ATR-FTIR, Dynamic Light Scattering (DLS), zeta potential, and release profiling. In both cases, the application of chitosomes enhanced long-term stability in size and surface charge. Chitosome-encapsulated ciprofloxacin formulations exhibited a slower and sustained release profile, while the combined effect of etoposide and chitosan showed heightened efficacy against the glioblastoma cell line U373. Therefore, coating liposomes with chitosan improved the encapsulation system's properties, resulting in a promising method for drug delivery.

9.
Cells ; 13(16)2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39195214

RESUMO

Following spinal cord injury (SCI), the regenerative capacity of the central nervous system (CNS) is severely limited by the failure of axonal regeneration. The regeneration of CNS axons has been shown to occur by grafting predegenerated peripheral nerves (PPNs) and to be promoted by the transplantation of neural precursor cells (NPCs). The introduction of a combinatorial treatment of PPNs and NPCs after SCI has to address the additional problem of glial scar formation, which prevents regenerating axons from leaving the implant and making functional connections. Previously, we discovered that the synthetic sulfoglycolipid Tol-51 inhibits astrogliosis. The objective was to evaluate axonal regeneration and locomotor function improvement after SCI in rats treated with a combination of PPN, NPC, and Tol-51. One month after SCI, the scar tissue was removed and replaced with segments of PPN or PPN+Tol-51; PPN+NPC+Tol-51. The transplantation of a PPN segment favors regenerative axonal growth; in combination with Tol-51 and NPC, 30% of the labeled descending corticospinal axons were able to grow through the PPN and penetrate the caudal spinal cord. The animals treated with PPN showed significantly better motor function. Our data demonstrate that PPN implants plus NPC and Tol-51 allow successful axonal regeneration in the CNS.


Assuntos
Regeneração Nervosa , Células-Tronco Neurais , Nervos Periféricos , Traumatismos da Medula Espinal , Animais , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/terapia , Traumatismos da Medula Espinal/patologia , Ratos , Regeneração Nervosa/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/transplante , Células-Tronco Neurais/citologia , Nervos Periféricos/efeitos dos fármacos , Nervos Periféricos/patologia , Feminino , Axônios/efeitos dos fármacos , Glicolipídeos/farmacologia , Recuperação de Função Fisiológica/efeitos dos fármacos
10.
Bioorg Med Chem Lett ; 23(2): 435-9, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23245511

RESUMO

Neurostatin, a natural glycosphingolipid, and NF115, a synthetic glycolipid, are inhibitors of glioma growth. While neurostatin shows high inhibitory activity on gliomas its abundance is low in mammalian brain. On the contrary NF115 exhibits less inhibitory activity on gliomas, but could be prepared by chemical synthesis. In this study we describe synthetic compounds, structurally related to NF115, capable of inhibiting glioma growth at low micromolar range. We used DNA microarray technology to compare the genes inhibited in U373-MG human glioma cells after treatment with the natural or synthetic inhibitor. New synthetic compounds were developed to interact with the product of Rho GDP dissociation inhibitor alpha gene, which was repressed in both treatments. Compounds that were inhibitors of glioma cell growth in assays for [3H]-thymidine incorporation were then injected in C6 tumor bearing rats and the tumor size in each animal group were measured. The GC-17, GC-4 and IG-5 are new compounds derived from NF115 and showed high antiproliferative activity on tumor cell lines. The GC-17 compound inhibited U373-MG glioblastoma cells (3.2 µM), the effects was fifty times more potent than NF115, and caused a significant reduction of tumor volume (P<0.05) when tested in Wistar rats allotransplanted with C6 glioma cells.


Assuntos
Acetilglucosamina/análogos & derivados , Glioma/tratamento farmacológico , Glicolipídeos/síntese química , Glicoesfingolipídeos/química , Propilenoglicóis/química , Acetilglucosamina/química , Acetilglucosamina/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação da Expressão Gênica , Glicolipídeos/química , Glicolipídeos/farmacologia , Glicoesfingolipídeos/farmacologia , Humanos , Análise em Microsséries , Propilenoglicóis/farmacologia , Inibidor alfa de Dissociação do Nucleotídeo Guanina rho/genética , Inibidor alfa de Dissociação do Nucleotídeo Guanina rho/metabolismo
11.
Cells ; 10(10)2021 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-34685763

RESUMO

Aldynoglia are growth-promoting cells with a morphology similar to radial glia and share properties and markers with astrocytes and Schwann cells. They are distributed in several locations throughout the adult central nervous system, where the cells of the aldynoglia interact and respond to the signals of the immune cells. After spinal cord injury (SCI), the functions of resident aldynoglia, identified as ependymocytes, tanycytes, and ependymal stem cells (EpSCs) of the spinal cord are crucial for the regeneration of spinal neural tissue. These glial cells facilitate axonal regrowth and remyelination of injured axons. Here, we review the influence of M1 or M2 macrophage/microglia subpopulations on the fate of EpSCs during neuroinflammation and immune responses in the acute, subacute, and chronic phases after SCI.


Assuntos
Inflamação/imunologia , Inflamação/patologia , Neuroglia/patologia , Neurônios/imunologia , Neurônios/patologia , Traumatismos da Medula Espinal/imunologia , Traumatismos da Medula Espinal/patologia , Animais , Humanos , Imunidade , Regeneração Nervosa , Traumatismos da Medula Espinal/fisiopatologia
12.
Ticks Tick Borne Dis ; 12(3): 101651, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33465663

RESUMO

Humans evolved by losing the capacity to synthesize the glycan Galα1-3Galß1-(3)4GlcNAc-R (α-Gal), which resulted in the capacity to develop a protective response mediated by anti-α-Gal IgM/IgG antibodies against pathogens containing this modification on membrane proteins. As an evolutionary trade-off, humans can develop the alpha-Gal syndrome (AGS), a recently diagnosed disease mainly associated with allergic reactions to mammalian meat consumption. The etiology of the AGS is the exposure to tick bites and the IgE antibody response against α-Gal-containing glycoproteins and glycolipids. The objective of this study was to characterize the anti-α-Gal antibody response in association with the immune-mediated peripheral neuropathy, Guillain-Barré syndrome (GBS), and compare it with different factors known to modulate the antibody response to α-Gal such as exposure to tick bites and development of allergic reactions in response to tick bites. The results showed a significant decrease in the IgM/IgG response to α-Gal in GBS patients when compared to healthy individuals. In contrast, the IgM/IgG levels to α-Gal did not change in patients with allergic reactions to tick bites. The IgE response was not affected in GBS patients, but as expected, the IgE levels significantly increased in individuals exposed to tick bites and patients with tick-associated allergies. These results suggest that the immune pathways of anti-α-Gal IgM/IgG and IgE production are independent. Further studies should consider the susceptibility to allergic reactions to tick bites in GBS patients.


Assuntos
Imunidade Adaptativa , Hipersensibilidade Alimentar/complicações , Síndrome de Guillain-Barré/complicações , Hipersensibilidade/imunologia , Picadas de Carrapatos/complicações , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Imunoglobulina G/imunologia , Imunoglobulina M/imunologia , Masculino , Pessoa de Meia-Idade , Adulto Jovem
13.
ACS Appl Mater Interfaces ; 12(23): 25534-25545, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32426965

RESUMO

Chitosan sulfates have demonstrated the ability to mimic heparan sulfate (HS) function. In this context, it is crucial to understand how the specific structural properties of HS domains determine their functionalities and biological activities. In this study, several HS-mimicking chitosans have been prepared to mimic the structure of HS domains that have proved to be functionally significant in cell processes. The results presented herein are in concordance with the hypothesis that sulfated chitosan-growth factor (GF) interactions are controlled by a combination of two effects: the electrostatic interactions and the conformational adaptation of the polysaccharide. Thus, we found that highly charged O-sulfated S-CS and S-DCS polysaccharides with a low degree of contraction interacted more strongly with GFs than N-sulfated N-DCS, with a higher degree of contraction and a low charge. Finally, the evidence gathered suggests that N-DCS would be able to bind to an allosteric zone and is likely to enhance GF signaling activity. This is because the bound protein remains able to bind to its cognate receptor, promoting an effect on cell proliferation as has been shown for PC12 cells. However, S-CS and S-DCS would sequester the protein, decreasing the GF signaling activity by depleting the protein or locally blocking its active site.


Assuntos
Materiais Biomiméticos/farmacologia , Quitosana/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Materiais Biomiméticos/síntese química , Materiais Biomiméticos/metabolismo , Materiais Biomiméticos/toxicidade , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Quitosana/síntese química , Quitosana/metabolismo , Quitosana/toxicidade , Heparitina Sulfato/química , Células PC12 , Ligação Proteica , Ratos
14.
F1000Res ; 9: 1366, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34408852

RESUMO

Humans evolved by losing the capacity to synthesize the glycan Galα1-3Galß1-(3)4GlcNAc-R (α-Gal), which resulted in the development of a protective response mediated by anti-α-Gal IgM/IgG/IgA antibodies against pathogens containing this modification on membrane proteins. As an evolutionary trade-off, humans can develop the alpha-Gal syndrome (AGS), a recently diagnosed disease mediated by anti-α-Gal IgE antibodies and associated with allergic reactions to mammalian meat consumption and tick bites. However, the anti-α-Gal antibody response may be associated with other immune-mediated disorders such as those occurring in patients with COVID-19 and Guillain-Barré syndrome (GBS). Here, we provide a dataset (209 entries) on the IgE/IgM/IgG/IgA anti-α-Gal antibody response in healthy individuals and patients diagnosed with AGS, tick-borne allergies, GBS and COVID-19. The data allows correlative analyses of the anti-α-Gal antibody response with factors such as patient and clinical characteristics, record of tick bites, blood group, age and sex. These analyses could provide insights into the role of anti-α-Gal antibody response in disease symptomatology and possible protective mechanisms.


Assuntos
COVID-19 , Hipersensibilidade Alimentar , Animais , Formação de Anticorpos , Humanos , Imunoglobulina G , SARS-CoV-2
15.
Glia ; 57(13): 1393-409, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19235256

RESUMO

Cells from central nervous system with morphology similar to radial glia and properties intermediate between astrocytes and Schwann cells were called growth-promoting glia or aldynoglia. These cells are present in adult brain olfactory bulb, hypothalamus, hypophysis, pineal gland and in the developing brain, and spinal cord (Cameron and Rakic (1991) Glia 4:124-137; Gudiño-Cabrera and Nieto-Sampedro (2000) 30:49-63). We report now that neurosphere cells, abundantly generated from E15 rat or E13 mouse corpus striatum, differentiate to aldynoglia-like cells when plated onto an adhesive substrate, and cultured in the presence of olfactory ensheathing cell conditioned medium, supplemented with EGF and bFGF. The immunophenotype, mRNA expression (microarray and RT-PCR analysis), neurite growth-promoting and ensheathing properties of the cells derived from neurospheres were similar to those of aldynoglia. Neurosphere-derived, aldynoglia-like cells expressed, with respect to neurospheres, very increased levels of GFAP, high levels of nestin and vimentin, extracellular matrix proteins, and inhibitors of the catabolism of those extracellular matrix proteins.


Assuntos
Diferenciação Celular/fisiologia , Corpo Estriado/citologia , Neuroglia/fisiologia , Bulbo Olfatório/citologia , Animais , Adesão Celular/genética , Adesão Celular/fisiologia , Movimento Celular , Células Cultivadas , Técnicas de Cocultura , Corpo Estriado/fisiologia , Meios de Cultivo Condicionados , Gânglios Espinais/fisiologia , Proteínas de Fluorescência Verde/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Bainha de Mielina/fisiologia , Neuritos/fisiologia , Neuroglia/citologia , Neurônios/fisiologia , Bulbo Olfatório/fisiologia , Ratos , Ratos Wistar
16.
Carbohydr Polym ; 202: 211-218, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30286994

RESUMO

Chondroitin sulfate (CS) is a relevant family of polysaccharides that participates in a large variety of biological events that are related to neural processes by regulating various growth factors through the pattern and degree of sulfation of the polysaccharide. However, their own complexity makes their optimization for biomedical applications a difficult undertaking. Thus, a different perspective has to be taken. Herein, we show that the particular sulfate distribution within the disaccharide repeating-unit plays a key role in the binding of growth factors (GFs). In particular, this disposition modulates the surface charge of the helical structure that, interestingly, has a significant influence on the binding capacity of CSs with several GFs. This fact should be carefully considered in the design of new ligands with improved activity as GFs ligands.


Assuntos
Sulfatos de Condroitina/química , Fatores de Crescimento de Fibroblastos/química , Animais , Sítios de Ligação , Configuração de Carboidratos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Condroitina Liases/metabolismo , Sulfatos de Condroitina/síntese química , Sulfatos de Condroitina/farmacologia , Humanos , Ligantes , Tamanho da Partícula , Ratos , Espectrometria de Fluorescência , Propriedades de Superfície
17.
Carbohydr Polym ; 191: 225-233, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29661313

RESUMO

Despite the relevant biological functions of heparan sulfate (HS) glycosaminoglycans, their limited availability and the chemical heterogeneity from natural sources hamper their use for biomedical applications. Chitosan sulfates (ChS) exhibit structural similarity to HSs and may mimic their biological functions. We prepared a variety of ChS with different degree of sulfation to evaluate their ability to mimic HS in protein binding and to promote neural cell division and differentiation. The structure of the products was characterized using various spectroscopic and analytical methods. The study of their interaction with different growth factors showed that ChS bound to the proteins similarly or even better than heparin. In cell cultures, a transition effect on cell number was observed as a function of ChS concentration. Differences in promoting the expression of the differentiation markers were also found depending on the degree of sulfation and modification in the chitosan.

18.
J Med Chem ; 50(2): 364-73, 2007 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-17228879

RESUMO

An N-acetylglucosaminide derivative with a pentaerythritol substituent at position C-6 was previously synthesized and shown to inhibit neural tumor growth. Now, we report the preparation of a series of new synthetic compounds introducing systematic changes in the nature, polarity, and size of the sugar substituents. The antimitotic activity of the new compounds was tested on cultured rat (C6) and human (U-373) glioma lines and on a human melanoma line (A-375). The antimitotic and antitumoral activity of the new compounds on glioma cell lines increased up to 2 orders of magnitude with respect to the parent compound or was abolished, permitting a detailed structure-function analysis of the new antitumorals. One of the glycosides inhibited melanoma division with an ID50 below the micromolar range.


Assuntos
Antineoplásicos/síntese química , Glioma , Glicosídeos/síntese química , Melanoma , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Glicosídeos/química , Glicosídeos/farmacologia , Humanos , Ratos , Relação Estrutura-Atividade
19.
Neural Regen Res ; 11(7): 1043-5, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27630672

RESUMO

A combined approach in spinal cord injury (SCI) therapy is the modulation of the cellular and molecular processes involved in glial scarring. Aldaynoglial cells are neural cell precursors with a high capacity to differentiate into neurons, promote axonal growth, wrapping and myelination of resident neurons. These important characteristics of aldaynoglia can be combined with specific inhibition of the RhoGTPase activity in astroglia and microglia that cause reduction of glial proliferation, retraction of glial cell processes and myelin production by oligodendrocytes. Previously we used experimental central nervous system (CNS) injury models, like spinal cord contusion and striatal lacunar infarction and observed that administration of RhoGTPase glycolipid inhibitor or aldaynoglial cells, respectively, produced a significant gain of functional recovery in treated animals. The combined therapy with neuro-regenerative properties strategy is highly desirable to treat SCI for functional potentiation of neurons and oligodendrocytes, resulting in better locomotor recovery. Here we suggest that treatment of spinal lesions with aldaynoglia from neurospheres plus local administration of a RhoGTPase inhibitor could have an additive effect and promote recovery from SCI.

20.
Oncotarget ; 7(46): 74582-74591, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27776345

RESUMO

Guillain-Barré syndrome (GBS) is an autoimmune-mediated peripheral neuropathy of unknown cause. However, about a quarter of GBS patients have suffered a recent bacterial or viral infection, and axonal forms of the disease are especially common in these patients. Proteomics is a good methodological approach for the discovery of disease biomarkers. Until recently, most proteomics studies of GBS and other neurodegenerative diseases have focused on the analysis of the cerebrospinal fluid (CSF). However, serum represents an attractive alternative to CSF because it is easier to sample and has potential for biomarker discovery. The goal of this research was the identification of serum biomarkers associated with recovery from GBS. To address this objective, a quantitative proteomics approach was used to characterize differences in the serum proteome between a GBS patient and her healthy identical twin in order to lessen variations due to differences in genetic background, and with additional serum samples collected from unrelated GBS (N = 3) and Spinal Cord Injury (SCI) (N = 3) patients with similar medications. Proteomics results were then validated by ELISA using sera from additional GBS patients (N = 5) and healthy individuals (N = 3). All GBS and SCI patients were recovering from the acute phase of the disease. The results showed that Piccolo, a protein that is essential in the maintenance of active zone structure, constitutes a potential serological correlate of recovery from GBS. These results provided the first evidence for the Piccolo´s putative role in GBS, suggesting a candidate target for developing a serological marker of disease recovery.


Assuntos
Biomarcadores , Proteínas do Citoesqueleto/sangue , Síndrome de Guillain-Barré/metabolismo , Síndrome de Guillain-Barré/reabilitação , Neuropeptídeos/sangue , Proteômica , Adulto , Idoso , Idoso de 80 Anos ou mais , Proteínas Sanguíneas , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Proteoma , Proteômica/métodos , Recuperação de Função Fisiológica , Reprodutibilidade dos Testes , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA