Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
J Liposome Res ; : 1-26, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520185

RESUMO

Triple-negative breast Cancer (TNBC) is one of the deadliest types, making up about 20% of all breast cancers. Chemotherapy is the traditional manner of progressed TNBC treatment; however, it has a short-term result with a high reversibility pace. The lack of targeted treatment limited and person-dependent treatment options for those suffering from TNBC cautions to be the worst type of cancer among breast cancer patients. Consequently, appropriate treatment for this disease is considered a major clinical challenge. Therefore, various treatment methods have been developed to treat TNBC, among which chemotherapy is the most common and well-known approach recently studied. Although effective methods are chemotherapies, they are often accompanied by critical limitations, especially the lack of specific functionality. These methods lead to systematic toxicity and, ultimately, the expansion of multidrug-resistant (MDR) cancer cells. Therefore, finding novel and efficient techniques to enhance the targeting of TNBC treatment is an essential requirement. Liposomes have demonstrated that they are an effective method for drug delivery; however, among a large number of liposome-based drug delivery systems annually developed, a small number have just received authorization for clinical application. The new approaches to using liposomes target their structure with various ligands to increase therapeutic efficiency and diminish undesired side effects on various body tissues. The current study describes the most recent strategies and research associated with functionalizing the liposomes' structure with different ligands as targeted drug carriers in treating TNBCs in preclinical and clinical stages.

2.
Fish Physiol Biochem ; 47(2): 477-486, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33569680

RESUMO

Several methods have been used to accelerate previtellogenesis and vitellogenesis stages in fish, including hormonal induction, sustained-release delivery systems, and oral delivery of gonadotropin-releasing hormone (GnRH). In this study, we proposed the oral administration of GnRH analog + nanoparticles of chitosan to accelerate oogenesis in goldfish as a model fish in reproductive biology and aquaculture. In this regard, adult female goldfish were fed with six experimental groups: chitosan, 50 µg GnRHa/kg b.w., 100 µg GnRHa/kg b.w., chitosan + 50 µg GnRHa/kg b.w., and chitosan + 100 µg GnRHa/kg b.w., and diet without any additive as the control for 40 days in triplicate. Every 10 days, ovarian samples were collected, and gonadosomatic index (GSI), oocyte diameter (OD), zona radiata thickness (Zr), and diameter of the follicular layer (Fl) were measured to assess ovarian developmental stage for each treatment. Additionally, blood sampling was done to measure serum 17ß-estradiol concentration at the end of the experiment. All parameters remained unchanged during the experiment in the chitosan-fed group. In the group fed with 100 µg GnRH or chitosan nanoparticle + 100 µg GnRHa, these parameters in general were increased. However, the effects in 50 µg GnRHa or chitosan nanoparticle + 50 µg GnRHa treatments were uncertain; they affected serum E2 levels as a trend toward a significant increase was observed in goldfish treated with chitosan nanoparticle + 100 µg GnRHa. Finally, the results indicated the oral administration of chitosan + 100 µg GnRHa/kg b.w. significantly accelerated the oocyte development and growth of ovary.


Assuntos
Quitosana/química , Carpa Dourada , Hormônio Liberador de Gonadotropina/farmacologia , Nanopartículas/química , Oogênese/efeitos dos fármacos , Administração Oral , Animais , Feminino , Hormônio Liberador de Gonadotropina/administração & dosagem , Hormônio Liberador de Gonadotropina/química , Oócitos/efeitos dos fármacos , Oócitos/crescimento & desenvolvimento
3.
Biomacromolecules ; 21(12): 4737-4746, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-32946219

RESUMO

This study investigated the application of a temperature-responsive methylcellulose-hyaluronic acid (MC-HA) hydrogel to support 3D cell growth in vitro. Initial work focused on the preparation of hydrogels for 3D culture, followed by investigations of the biological compatibility of hydrogel components and optimization of the cell culture environment. Evaluation of viability and proliferation of HCT116 cells cultured in the MC-HA hydrogel was used to adjust the blend composition to design a hydrogel with optimal properties to support cell growth. Two important aspects in terms of the application of the proposed polymeric matrix in 3D cell culture were demonstrated: (i) 3D cultured cell aggregates can be released/recovered from the matrix via a gentle procedure that will preserve cell viability and (ii) the hydrogel matrix is amenable to application in a 96-well plate format as a standard approach employed in in vitro tissue culture tests. The work therefore shows that MC-HA hydrogels demonstrate potential for in vitro 3D cell culture as inexpensive and well-defined alternatives to animal-derived or complex synthetic systems.


Assuntos
Hidrogéis , Metilcelulose , Animais , Técnicas de Cultura de Células , Ácido Hialurônico , Temperatura
4.
Drug Dev Ind Pharm ; 46(2): 318-328, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31976771

RESUMO

Uncontrolled distribution of nanoparticles (NPs) within the body can significantly decrease the efficiency of drug therapy and is considered among the main restrictions of NPs application. The aim of this study was to develop a depot combination delivery system (CDS) containing fingolimod loaded poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) NPs dispersed into a matrix of oleic acid-grafted-aminated alginate (OA-g-AAlg) to minimize the nonspecific biodistribution (BD) of PHBV NPs. OA-g-AAlg was synthesized in two step; First, Alg was aminated by using adipic dihydrazide (ADH). The degree of hyrazide group substitution of Alg was determined by trinitro-benzene-sulfonic acid (TNBS) assay. Second, OA was attached to AAlg through formation of an amide bond. Chemical structure of OA-g-AAlg was confirmed with FTIR and HNMR spectroscopy. Furthermore, rheological properties of OA-g-AAlg with different grafting ratios were evaluated. In-vitro release studies indicated that 47% of fingolimod was released from the CDS within 28 days. Blood and tissue samples were analyzed using liquid chromatography/tandem mass spectrometry following subcutaneous (SC) injection of fingolimod-CDS into Wistar rats. The elimination phase half-life of CDS-fingolimod was significantly higher than that of fingolimod (∼32 d vs. ∼20 h). To investigate the therapeutic efficacy, lymphocyte count was assessed over a 40 day period in Wistar rats. Peripheral blood lymphocyte count decreased from baseline by 27 ± 8% in 2 days after injection. Overall, the designed CDS represented promising results in improving the pharmacokinetic properties of fingolimod. Therefore, we believe that this sustained release formulation has a great potential to be applied to delivery of various therapeutics.


Assuntos
Alginatos/química , Cloridrato de Fingolimode/química , Nanopartículas/química , Poliésteres/química , Animais , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Cloridrato de Fingolimode/farmacocinética , Cloridrato de Fingolimode/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Masculino , Ratos , Ratos Wistar , Distribuição Tecidual
5.
Pharm Dev Technol ; 25(2): 206-218, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31648589

RESUMO

5-Fluorouracil (5-FU) is one of the most widely used agents in the first-line chemotherapy for colon cancer. However, clinical use of 5-FU is limited because of the low efficacy of drug uptake and systemic toxic effects. Therefore, there is a critical need to find better drug delivery systems in order to improve the efficacy of the drug. In the present study, we have developed a novel combination drug delivery system based on PHBV/PLGA NPs for delivery of 5-FU to cancer cells. NPs were prepared by the double emulsion method and their optimization of preparation was evaluated using Box-Behnken design (BBD) of response surface methodology (RSM). 5-FU loaded NPs were characterized by scanning electron microscope (SEM), differential scanning calorimetry (DSC), thermogravimetry analysis (TGA), and Fourier transformed infra-red spectroscopy (FT-IR). SEM image implied that NPs were spherical in shape and the results of DSC, TGA, and FT-IR suggest that 5-FU was encapsulated into NPs. The obtained results revealed that 5-FU loaded PHBV/PLGA NPs induced significant higher cell death at concentration much lower than free 5-FU. Results of hemolysis assay indicated that the NPs were hemo-compatible. In vivo anti-tumor studies showed that 5-FU loaded NPs reduced tumor volume significantly in comparison with free 5-FU. As the first example of using PHBV/PLGA as nano-drug delivery system with enhanced anti-tumor activities, this study establishes PHBV/PLGA as a novel promising drug delivery platform for treatment of colon cancer.


Assuntos
Neoplasias do Colo/tratamento farmacológico , Fluoruracila/química , Fluoruracila/farmacologia , Nanopartículas/química , Poliésteres/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Animais , Varredura Diferencial de Calorimetria/métodos , Linhagem Celular Tumoral , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Células HT29 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
6.
Pharm Dev Technol ; 24(2): 176-188, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29557733

RESUMO

The purpose of this research was the fabrication, statistical optimization, and in vitro characterization of insulin-loaded poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) nanoparticles (INS-PHBV-NPs). Nanopar-ticles were successfully developed by double emulsification solvent evaporation method. The NPs were characterized for particle size, entrapment efficiency (EE%), and polydispersity index (PDI). The NPs also were characterized by scanning electron microscopy (SEM), Fourier transformed infrared spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), and circular dichroism (CD). The optimum conditions were found to be 1.6% polyvinyl alcohol (PVA), 0.9% of PHBV, and 15 mg/ml of insulin with the aid of the Box-Behnken experimental design results. The optimized NPs showed spherical shape with particle size of 250.21 ± 11.37 nm, PDI of 0.12 ± 0.01, and with EE% of 90.12 ± 2.10%. In vitro drug release pattern followed Korsmeyer-Peppas model and exhibited an initial burst release of 19% with extended drug release of 63.2% from optimized NPs within 27 d. In conclusion, these results suggest that INS-PHBV-NPs could be a promising candidate for designing an injectable sustained release formulation for insulin.


Assuntos
Insulina de Ação Prolongada/química , Nanopartículas/química , Poliésteres/química , Varredura Diferencial de Calorimetria/métodos , Química Farmacêutica/métodos , Preparações de Ação Retardada/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Tamanho da Partícula , Álcool de Polivinil/química , Difração de Raios X/métodos
7.
Drug Dev Ind Pharm ; 44(5): 861-867, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29235889

RESUMO

The aim of the present research was to evaluate the impact of coating layers on release profile from enteric coated dosage forms. Capsules were coated with Eudragit FS 30D using dipping method. The drug profile was evaluated in both phosphate buffer and Hank's solutions. Utilization X-ray imaging, gastrointestinal transmission of enteric coated capsules was traced in rats. According to the results, no release of the drug was found at pH 1.2, and the extent of release drug in pH 6.8 medium was decreased by adding the coating layers. The results indicated single-layer coated capsules in phosphate buffer were significantly higher than that in Hank's solution. However, no significant difference was observed from capsules with three coating layers in two different dissolution media. X-ray imaging showed that enteric coated capsules were intact in the stomach and in the small intestine, while disintegrated in the colon.


Assuntos
Cápsulas/química , Colo/metabolismo , Ácidos Polimetacrílicos/farmacologia , Animais , Química Farmacêutica , Colo/química , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Ácidos Polimetacrílicos/química , Ratos
8.
J Cell Biochem ; 118(12): 4854-4861, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28543858

RESUMO

Oxidative conditions of the eye could contribute to retinal cells loss through activating the Fas-L/Fas pathway. This phenomenon is one of the leading causes of some ocular diseases like age-related macular degeneration (AMD). By targeting proteins at their mRNA level, microRNAs (miRNAs) can regulate gene expression and cell function. The aim of the present study is to investigate Fas targeting by miR-374a and find whether it can inhibit Fas-mediated apoptosis in primary human retinal pigment epithelial (RPE) cells under oxidative stress. So, the primary human RPE cells were transfected with pre-miR-374a pLEX construct using polymeric carrier and were exposed to H2 O2 (200 µM) as an oxidant agent for induction of Fas expression. Fas expression at mRNA and protein level was evaluated by quantitative real-time PCR and Western blot analysis, respectively. These results revealed that miR-374a could prevent Fas upregulation under oxidative conditions. Moreover, Luciferase activity assay confirmed that Fas could be a direct target of miR-374a. The cell viability studies demonstrated that caspase-3 activity was negligible in miR-374a treated cells compared to the controls. Our data suggest miR-374a is a negative regulator of Fas death receptor which is able to enhance the cell survival and protect RPE cells against oxidative conditions. J. Cell. Biochem. 118: 4854-4861, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Células Epiteliais/metabolismo , Peróxido de Hidrogênio/farmacologia , MicroRNAs/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo , Receptor fas/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Células Epiteliais/citologia , Humanos , Epitélio Pigmentado da Retina/citologia
9.
Drug Dev Ind Pharm ; 43(3): 390-398, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27796140

RESUMO

The aim of this study was to evaluate the in vitro and in vivo efficacy of paclitaxel-lapatinib-loaded Pluronic micelles. Lapatinib and pluronic sensitize the cancerous cells to paclitaxel via efflux pump inhibition. In addition, pluronic polymers can trigger intrinsic apoptosis pathways. Furthermore, micellar system can passively target the chemotherapeutic agents by enhanced permeability and retention effect. The paclitaxel-lapatinib-loaded micelles were characterized in means of encapsulation efficacy and size. The in vitro analyses were performed by MTT assay and uptake studies. Real-time imaging and in vivo anti-tumor efficacy studies were also performed. The prepared micelles have acceptable encapsulation ratio and size. Hemolysis assay confirmed that the micelles are hemo-compatible. MTT assay demonstrated that drug-loaded micelles have superior cytotoxicity compared with the naked drugs. The confocal microscopy and flowcytometry analyses showed that micelles are mainly internalized by endocytosis. According to the results of the in vivo imaging, the micelles are accumulated within liver. In vivo anti-tumor efficacy studies confirmed that tumor inhibition of drug-loaded micelles was significant compared to Intaxel®.


Assuntos
Micelas , Paclitaxel/administração & dosagem , Poloxâmero/administração & dosagem , Quinazolinas/administração & dosagem , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Hemólise/efeitos dos fármacos , Hemólise/fisiologia , Lapatinib , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Paclitaxel/metabolismo , Poloxâmero/metabolismo , Quinazolinas/metabolismo , Ratos , Ratos Sprague-Dawley , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/fisiologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
10.
AAPS PharmSciTech ; 18(1): 115-129, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-26896317

RESUMO

The objective of this study was to investigate the combined influence of independent variables in the preparation of folic acid-chitosan-methotrexate nanoparticles (FA-Chi-MTX NPs). These NPs were designed and prepared for targeted drug delivery in tumor. The NPs of each batch were prepared by coaxial electrospray atomization method and evaluated for particle size (PS) and particle size distribution (PSD). The independent variables were selected to be concentration of FA-chitosan, ratio of shell solution flow rate to core solution flow rate, and applied voltage. The process design of experiments (DOE) was obtained with three factors in three levels by Design expert software. Box-Behnken design was used to select 15 batches of experiments randomly. The chemical structure of FA-chitosan was examined by FTIR. The NPs of each batch were collected separately, and morphologies of NPs were investigated by field emission scanning electron microscope (FE-SEM). The captured pictures of all batches were analyzed by ImageJ software. Mean PS and PSD were calculated for each batch. Polynomial equation was produced for each response. The FE-SEM results showed the mean diameter of the core-shell NPs was around 304 nm, and nearly 30% of the produced NPs are in the desirable range. Optimum formulations were selected. The validation of DOE optimization results showed errors around 2.5 and 2.3% for PS and PSD, respectively. Moreover, the feasibility of using prepared NPs to target tumor extracellular pH was shown, as drug release was greater in the pH of endosome (acidic medium). Finally, our results proved that FA-Chi-MTX NPs were active against the human epithelial cervical cancer (HeLa) cells.


Assuntos
Quitosana/química , Ácido Fólico/química , Metotrexato/química , Nanopartículas/química , Linhagem Celular , Linhagem Celular Tumoral , Química Farmacêutica/métodos , Quitosana/administração & dosagem , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Ácido Fólico/administração & dosagem , Células HeLa , Humanos , Metotrexato/administração & dosagem , Nanopartículas/administração & dosagem , Tamanho da Partícula
11.
Pharm Dev Technol ; 21(1): 14-25, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-25255172

RESUMO

The aim of this study was preparation, optimization and in vitro characterization of nanoparticles composed of 6-[O-carboxymethyl]-[N,N,N-trimethyl] (TMCMC) for oral delivery of low-molecular-weight heparin. The chitosan derivative was synthesized. Nanoparticles were prepared using the polyelectrolyte complexation method. Box-Behnken response surface experimental design methodology was used for optimization of nanoparticles. The morphology of nanoparticles was studied using transmission electron microscopy. In vitro release of enoxaparin from nanoparticles was determined under simulated intestinal fluid. The cytotoxicity of nanoparticles on a Caco-2 cell line was determined, and finally the transport of prepared nanoparticles across Caco-2 cell monolayer was defined. Optimized nanoparticles with proper physico-chemical properties were obtained. The size, zeta potential, poly-dispersity index, entrapment efficiency and loading efficiency of nanoparticles were reported as 235 ± 24.3 nm, +18.6 ± 2.57 mV, 0.230 ± 0.03, 76.4 ± 5.43% and 12.6 ± 1.37%, respectively. Morphological studies revealed spherical nanoparticles with no sign of aggregation. In vitro release studies demonstrated that 93.6 ± 1.17% of enoxaparin released from nanoparticles after 600 min of incubation. MTT cell cytotoxicity studies showed no cytotoxicity at 3 h post-incubation, while the study demonstrated concentration-dependent cytotoxicity after 24 h of exposure. The obtained data had shown that the nanoparticles prepared from trimethylcarboxymethyl chitosan may be considered as a good candidate for oral delivery of enoxaparin.


Assuntos
Quitosana/análogos & derivados , Sistemas de Liberação de Medicamentos/métodos , Heparina de Baixo Peso Molecular/síntese química , Nanopartículas/química , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Quitosana/administração & dosagem , Quitosana/síntese química , Heparina de Baixo Peso Molecular/administração & dosagem , Humanos , Nanopartículas/administração & dosagem , Tamanho da Partícula
12.
J Microencapsul ; 32(4): 401-7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26052722

RESUMO

It was the aim of this study to evaluate the impact of lipases on the release behaviour of a peptide drug from oral self-nanoemulsifying drug delivery systems. Octreotide was ion paired with the anionic surfactants deoxycholate, decanoate, oleate and dodecylsulphate. The lipophilic character of these complexes was characterised by determining the n-octanol/buffer pH 7.4 partition coefficient. In the following the most hydrophilic complex was incorporated in a likely lipase degradable self-nanoemulsifying drug delivery systems (SNEDDS) formulation containing a triglyceride (olive oil; Pharm.Eur.) and in a likely not lipase degradable SNEDDS containing lipids and surfactants without any ester bonds. After 1:100 dilutions in artificial intestinal fluid (AIF), the lipid droplets were characterised regarding size distribution. With these SNEDDS, drug release studies were performed in AIF with and without lipase. Results showed that the most hydrophobic complex can be formed with deoxycholate in an octreotide:anionic surfactant ratio of 1:5. Even 73.1 ± 8.1% of it could be quantified in the n-octanol phase. SNEDDS containing octreotide | olive oil | cremophor EL | propylene glycol (2|57|38|3) and octreotide | liquid paraffin | Brij 35 | propylene glycol | ethanol (2|66.5|25|5|1.5) showed after dilution in AIF, a mean droplet size of 232 ± 53 nm and 235 ± 50 nm, respectively. Drug release studies showed a sustained release of octreotide out of these formulations for at least 24 h, whereas > 80% of the drug was released within 2 h in the presence of lipase in the case of the triglyceride containing SNEEDS. In contrast the release profile from ester-free SNEDDS was not significantly altered (p < 0.05) due to the addition of lipase providing evidence for the stability of this formulation towards lipases. According to these results, SNEDDS could be identified as a useful tool for sustained oral peptide delivery taking an enzymatic degradation by intestinal lipases into considerations.


Assuntos
Antineoplásicos Hormonais/administração & dosagem , Emulsões/química , Lipase/metabolismo , Octreotida/administração & dosagem , Peptídeos/administração & dosagem , Veículos Farmacêuticos/química , Administração Oral , Animais , Antineoplásicos Hormonais/química , Antineoplásicos Hormonais/metabolismo , Liberação Controlada de Fármacos , Emulsões/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Octreotida/química , Octreotida/metabolismo , Peptídeos/metabolismo , Veículos Farmacêuticos/metabolismo , Tensoativos/química , Tensoativos/metabolismo , Suínos
13.
AAPS PharmSciTech ; 16(4): 952-62, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25604700

RESUMO

In this study, the use of trimethylchitosan (TMC), by higher solubility in comparison with chitosan, in alginate/chitosan nanoparticles containing cationic ß-cyclodextrin polymers (CPßCDs) has been studied, with the aim of increasing insulin uptake by nanoparticles. Firstly, TMCs were synthesized by iodomethane, and CPßCDs were synthesized within a one-step polycondensation reaction using choline chloride (CC) and epichlorohydrine (EP). Insulin-CßCDPs complex was prepared by mixing 1:1 portion of insulin and CPßCDs solutions. Then, nanoparticles prepared in a three-step procedure based on the iono-tropic pregelation method. Nanoparticles screened using experimental design and Placket Burman methodology to obtain minimum size and polydispercity index (pdI) and the highest entrapment efficiency (EE). CPßCDs and TMC solution concentration and pH and alginate and calcium chloride solution concentrations are found as the significant parameters on size, PdI, and EE. The nanoparticles with proper physicochemical properties were obtained; the size, PdI, and EE% of optimized nanoparticles were reported as 150.82 ± 21 nm, 0.362 ± 0.036, and 93.2% ± 4.1, respectively. The cumulative insulin release in intestinal condition achieved was 50.2% during 6 h. By SEM imaging, separate, spherical, and nonaggregated nanoparticles were found. In the cytotoxicity studies on Caco-2 cell culture, no significant cytotoxicity was observed in 5 h of incubation, but after 24 h of incubation, viability was decreased to 50% in 0.5 mµ of TMC concentration. Permeability studies across Caco-2 cells had been carried out, and permeability achieved in 240 min was 8.41 ± 0.39%, which shows noticeable increase in comparison with chitosan nanoparticles. Thus, according to the results, the optimized nanoparticles can be used as a new insulin oral delivery system.


Assuntos
Ácidos/química , Alginatos , Quitosana/química , Insulina/administração & dosagem , Polímeros/química , beta-Ciclodextrinas/química , Administração Oral , Células CACO-2 , Ácido Glucurônico , Ácidos Hexurônicos , Humanos , Técnicas In Vitro , Microscopia Eletrônica de Varredura , Espectroscopia de Prótons por Ressonância Magnética
14.
J Pharm Pharm Sci ; 17(4): 461-74, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25579429

RESUMO

PURPOSE: The aim of this study was to investigate the in vitro gene delivery efficiency of poly[N-(2-aminoethyl)ethylene-imine](PAEEI), a polymer with a linear Polyethyleneimine (LPEI) backbone and with aminoethyl side groups that has two protonatable nitrogen atoms per monomer unit instead of one as in LPEI (an established gene delivery polymer). Method. PAEEI (Mn=4.5 kDa, Mw= 10 kDa) was synthesized by ring-opening polymerization of N-(2-(1'-aziridino)ethyl)formamide followed by hydrolysis of the amide groups. The buffering capacity of the resulting polymer was determined by acid-base titration and consequently the percentage of the protonated nitrogen atoms was calculated. Polyplexes were prepared separately in buffers with different ionic strength including Hepes buffered saline (150 mM NaCl) and Hepes buffered glucose (5% glucose) and their zeta-potential, hydrodynamic diameter and colloidal stability were measured. Transfection activity (and toxicity in Hela cells) of the polyplexes were done in HeLa, CHO and HEK293T cells. Cell incubations with polyplexes were done both in the presence and absence (HeLa cells) of serum. Results. PAEEEI showed two times more buffering capacity than LPEI. PAEEI-based Polyplexes had about the same size and zeta-potential as those of LPEI, with a higher colloidal stability in saline buffer in continuous particle size measurement. Their transfection activity was slightly higher than 22-kDa LPEI polyplexes whereas their toxicity profiles were similar in cell lines studied. The PAEEI polyplexes showed gene expression activity both in the presence and absence of serum. Conclusion. Paying attention to the fact that LPEI molecules with smaller sizes than 22 kDa show less transfection efficiency than LPEI 22, the effect of smaller size of PAEEI (10 kDa) on the gene delivery efficiency was compensated by its higher buffering capacity due to carrying more protonatable nitrogen per monomeric unit comparing with LPEI (22 kDa). Having slightly higher transfection efficiency and better colloidal stability than PEI-based systems, PAEEI is an attractive candidate for future in vivo gene delivery studies.


Assuntos
Técnicas de Transferência de Genes , Polietilenoimina/química , Polímeros/química , Transfecção , Animais , Células CHO , Cricetinae , Cricetulus , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Células HeLa , Humanos , Nitrogênio/química , Tamanho da Partícula , Polietilenoimina/toxicidade , Polímeros/toxicidade
15.
Drug Dev Ind Pharm ; 40(5): 691-8, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24524272

RESUMO

The purpose of this study is to optimize and characterize of chitosan buccal film for delivery of insulin nanoparticles that were prepared from thiolated dimethyl ethyl chitosan (DMEC-Cys). Insulin nanoparticles composed of chitosan and dimethyl ethyl chitosan (DMEC) were also prepared as control groups. The release of insulin from nanoparticles was studied in vitro in phosphate buffer solution (PBS) pH 7.4. Optimization of chitosan buccal films has been carried out by central composite design (CCD) response surface methodology. Independent variables were different amounts of chitosan and glycerol as mucoadhesive polymer and plasticizer, respectively. Tensile strength and bioadhesion force were considered as dependent variables. Ex vivo study was performed on excised rabbit buccal mucosa. Optimized insulin nanoparticles were obtained with acceptable physicochemical properties. In vitro release profile of insulin nanoparticles revealed that the highest solubility of nanoparticles in aqueous media is related to DMEC-Cys nanoparticles. CCD showed that optimized buccal film containing 4% chitosan and 10% glycerol has 5.81 kg/mm(2) tensile strength and 2.47 N bioadhesion forces. Results of ex vivo study demonstrated that permeation of insulin nanoparticles through rabbit buccal mucosa is 17.1, 67.89 and 97.18% for chitosan, DMEC and DMEC-Cys nanoparticles, respectively. Thus, this study suggests that DMEC-Cys can act as a potential enhancer for buccal delivery of insulin.


Assuntos
Quitosana/análogos & derivados , Insulina/administração & dosagem , Nanopartículas/administração & dosagem , Adesividade , Administração Bucal , Animais , Química Farmacêutica , Quitosana/administração & dosagem , Quitosana/química , Sistemas de Liberação de Medicamentos , Concentração de Íons de Hidrogênio , Insulina/farmacocinética , Mucosa Bucal/metabolismo , Nanopartículas/química , Absorção pela Mucosa Oral , Coelhos , Propriedades de Superfície , Resistência à Tração
16.
Drug Dev Ind Pharm ; 40(12): 1645-59, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24093431

RESUMO

OBJECTIVE: The purpose of this research was the development, in vitro, ex vivo and in vivo characterization of lyophilized insulin nanoparticles prepared from quaternized N-aryl derivatives of chitosan. METHODS: Insulin nanoparticles were prepared from methylated N-(4-N,N-dimethylaminobenzyl), methylated N-(4 pyridinyl) and methylated N-(benzyl). Insulin nanoparticles containing non-modified chitosan and also trimethyl chiotsan (TMC) were also prepared as control. The effects of the freeze-drying process on physico-chemical properties of nanoparticles were investigated. The release of insulin from the nanoparticles was studied in vitro. The mechanism of the release of insulin from different types of nanoparticles was determined using curve fitting. The secondary structure of the insulin released from the nanoparticles was analyzed using circular dichroism and the cell cytotoxicity of nanoparticles on a Caco-2 cell line was determined. Ex vivo studies were performed on excised rat jejunum using Frantz diffusion cells. In vivo studies were performed on diabetic male Wistar rats and blood glucose level and insulin serum concentration were determined. RESULTS: Optimized nanoparticles with proper physico-chemical properties were obtained. The lyophilization process was found to cause a decrease in zeta potential and an increase in PdI as well as and a decrease in entrapment efficiency (EE%) and loading efficiency (LE%) but conservation in size of nanoparticles. Atomic force microscopy (AFM) images showed non-aggregated, stable and spherical to sub-spherical nanoparticles. The in vitro release study revealed higher release rates for lyophilized compared to non-lyophilized nanoparticles. Cytotoxicity studies on Caco-2 cells revealed no significant cytotoxicity for prepared nanoparticles after 3-h post-incubation but did show the concentration-dependent cytotoxicity after 24 h. The percentage of cumulative insulin determined from ex vivo studies was significantly higher in nanoparticles prepared from quaternized aromatic derivatives of chitosan. In vivo data showed significantly higher insulin intestinal absorption in nanoparticles prepared from methylated N-(4-N, N-dimethylaminobenzyl) chitosan nanoparticles compared to trimethyl chitosan. CONCLUSION: These data obtained demonstrated that as the result of optimized physico-chemical properties, drug release rate, cytotoxicity profile, ex vivo permeation enhancement and increased in vivo absorption, nanoparticles prepared from N-aryl derivatives of chitosan can be considered as valuable method for the oral delivery of insulin.


Assuntos
Quitosana/administração & dosagem , Portadores de Fármacos/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Insulina/administração & dosagem , Nanopartículas/administração & dosagem , Administração Oral , Animais , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Células CACO-2 , Quitosana/química , Portadores de Fármacos/química , Liofilização , Humanos , Insulina/química , Jejuno/efeitos dos fármacos , Jejuno/metabolismo , Masculino , Nanopartículas/química , Ratos , Ratos Wistar
17.
J Pharm Sci ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38508339

RESUMO

PURPOSE: In the present study, biodegradable poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) nanoparticles (NPs) containing insulin were loaded in sodium alginate/jeffamine (ALG/jeff) hydrogel for prolonged delivery of insulin. The main aim of this work was to fabricate an efficient insulin delivery system to improve patient adherence by decreasing the repetition of injections. METHODS: Swelling and morphological properties and crosslinking efficiency of ALG/jeff hydrogel were assessed. The composite hydrogel was prepared by adding PHBV NPs to ALG/jeff hydrogel concurrently with crosslinking process. The morphology and loading capacity of composite hydrogel were analyzed. RESULTS: Circular dichroism measurement demonstrated that insulin remains stable following fabrication process. The release profile exhibited 54.6 % insulin release from composite hydrogel within 31 days with minor initial burst release equated to nanoparticles and hydrogels. MTT cell viability analysis was performed by applying L-929 cell line and no cytotoxic effect was observed. CONCLUSIONS: Favorable results clearly introduced fabricated composite hydrogel as an excellent candidate for drug delivery systems and also paves the route for prolonged delivery systems of other proteins.

18.
Macromol Biosci ; 23(9): e2300181, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37399543

RESUMO

Pure positive electrostatic charges (PPECs) show suppressive effect on the proliferation and metabolism of invasive cancer cells without affecting normal tissues. PPECs are used for the delivery of drug-loaded polymeric nanoparticles (DLNs) capped with negatively charged poly(lactide-co-glycolide) (PLGA) and Poly(vinyl-alcohol) PVA into the tumor site of mouse models. The charged patch is installed on top of the skin in the mouse models' tumor region, and the controlled selective release of the drug is assayed by biochemical, radiological, and histological experiments on both tumorized models and normal rats' livers. It is found that DLNs synthesized by PLGA show great attraction to PPECs due to their stable negative charges, which would not degrade immediately in blood. The burst and drug release after less than 48h of this synthesized DLNs are 10% and 50%, respectively. These compounds can deliver the loaded-drug into the tumor site with the assistance of PPECs, and the targeted-retarded release will take place. Hence, local therapy can be achieved with much lower drug concentration (conventional chemotherapy [2 mg kg-1 ] versus DLNs-based chemotherapy [0.75 mg kg-1 ]) with negligible side effects in non-targeted organs. PPECs have many potential clinical applications for advanced-targeted chemotherapy with the lowest discernible side effects.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Camundongos , Ratos , Animais , Sistemas de Liberação de Medicamentos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/metabolismo , Eletricidade Estática , Antineoplásicos/química , Polímeros/uso terapêutico , Neoplasias/tratamento farmacológico , Nanopartículas/química , Portadores de Fármacos/química , Liberação Controlada de Fármacos
19.
Drug Deliv Transl Res ; 12(6): 1339-1354, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34402023

RESUMO

Cancer is a multidimensional and challenging disease to handle. Current statistics reveal that we are far from satisfying cancer treatment. Taking advantage of different therapeutic agents that affect multiple pathways has been established as highly productive. Nevertheless, owing to several hindrances to conventional combination therapy, such as lack of tumor targeting, non-uniform pharmacokinetic of the combined drugs, and off-target side effects, it is well documented that this treatment approach is unlikely to address all the difficulties observed in monotherapy. Co-delivery systems could enhance the therapeutic efficacy of the combination therapy by targeting cancer cells and improving the pharmacokinetic and physicochemical properties of the therapeutic agents. Nevertheless, it seems that present knowledge in responding to the challenges in cancer treatment is still inadequate and far from optimal treatment, which highlights the urgent need for systematic studies direct to identify various aspects of co-delivery systems. Accordingly, to gather informative data, save time, and achieve superior results, the following steps are necessary: (1) implementing computational methods to predict drug-drug interactions (DDIs) in vitro and in vivo, (2) meticulous cancer studies at the cellular and molecular levels to obtain specific criteria for selecting preclinical and clinical models, (3) extensive physiological and pharmacokinetic study of nanocarriers behavior in preclinical models, and (4) finding the optimal formulation and analyzing its behavior in cellular and animal models facilitates bridging in vivo models to clinical trials. This review aims to deliver an overview of co-delivery systems, rationales, and suggestions for further studies in this field.


Assuntos
Antineoplásicos , Neoplasias , Animais , Terapia Combinada , Sistemas de Liberação de Medicamentos , Neoplasias/patologia
20.
AAPS PharmSciTech ; 12(4): 1407-19, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22033812

RESUMO

The aim of this study was the preparation, optimization, and in vitro characterization of insulin nanoparticles composed of methylated N-(4-N,N-dimethylaminobenzyl), methylated N-(4-pyridinyl), and methylated N-(benzyl) chitosan. Three types of derivatives were synthesized by the Schiff base reaction followed by quaternization. Nanoparticles were prepared by the polyelectrolyte complexation method. Experimental design D-optimal response surface methodology was used for the optimization of the nanoparticles. Independent variables were pH of polymer solution, concentration ratio of polymer/insulin, and also polymer type. Dependent variables include size, zeta potential, polydispersity index (PdI), and entrapment efficiency (EE%). Optimized nanoparticles were studied morphologically by transmission electron microscopy (TEM), and in vitro release of insulin from nanoparticles were determined under phosphate buffer (pH = 6.8) condition. Although a quadratic model has been chosen to fit the responses for size, PdI, and EE%, the zeta potential of the particles has been best fitted to 2-FI model. The optimized nanoparticles were characterized. The size of the particles were found to be 346, 318, and 289 nm; zeta potentials were 28.5, 27.7, and 22.2 mV; PdI of particles were 0.305, 0.333, and 0.437; and calculated EE% were 70.3%, 84.5%, and 69.2%, for methylated (aminobenzyl), methylated (pyridinyl), and methylated (benzyl) chitosan nanoparticles, respectively. TEM images show separated and non-aggregated nanoparticles with sub-spherical shapes and smooth surfaces. An in vitro release study of the prepared nanoparticles showed that the cumulative percentage of insulin released from the nanoparticles were 47.1%, 38%, and 68.7% for (aminobenzyl), (pyridinyl), and (benzyl) chitosan, respectively, within 300 min.


Assuntos
Portadores de Fármacos , Hipoglicemiantes/química , Insulina/química , Modelos Estatísticos , Nanopartículas , Nanotecnologia , Tecnologia Farmacêutica/métodos , Química Farmacêutica , Quitosana/análogos & derivados , Quitosana/síntese química , Composição de Medicamentos , Concentração de Íons de Hidrogênio , Cinética , Metilação , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Piridinas/síntese química , Compostos de Amônio Quaternário/síntese química , Solubilidade , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA