Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell ; 34(1): 72-102, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34529074

RESUMO

As scientists, we are at least as excited about the open questions-the things we do not know-as the discoveries. Here, we asked 15 experts to describe the most compelling open questions in plant cell biology. These are their questions: How are organelle identity, domains, and boundaries maintained under the continuous flux of vesicle trafficking and membrane remodeling? Is the plant cortical microtubule cytoskeleton a mechanosensory apparatus? How are the cellular pathways of cell wall synthesis, assembly, modification, and integrity sensing linked in plants? Why do plasmodesmata open and close? Is there retrograde signaling from vacuoles to the nucleus? How do root cells accommodate fungal endosymbionts? What is the role of cell edges in plant morphogenesis? How is the cell division site determined? What are the emergent effects of polyploidy on the biology of the cell, and how are any such "rules" conditioned by cell type? Can mechanical forces trigger new cell fates in plants? How does a single differentiated somatic cell reprogram and gain pluripotency? How does polarity develop de-novo in isolated plant cells? What is the spectrum of cellular functions for membraneless organelles and intrinsically disordered proteins? How do plants deal with internal noise? How does order emerge in cells and propagate to organs and organisms from complex dynamical processes? We hope you find the discussions of these questions thought provoking and inspiring.


Assuntos
Células Vegetais/fisiologia , Fenômenos Fisiológicos Vegetais , Biologia Celular , Desenvolvimento Vegetal
2.
Plant Cell ; 32(5): 1434-1448, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32184347

RESUMO

The gene balance hypothesis postulates that there is selection on gene copy number (gene dosage) to preserve the stoichiometric balance among interacting proteins. This presupposes that gene product abundance is governed by gene dosage and that gene dosage responses are consistent for interacting genes in a dosage-balance-sensitive network or complex. Gene dosage responses, however, have rarely been quantified, and the available data suggest that they are highly variable. We sequenced the transcriptomes of two synthetic autopolyploid accessions of Arabidopsis (Arabidopsis thaliana) and their diploid progenitors, as well as one natural tetraploid and its synthetic diploid produced via haploid induction, to estimate transcriptome size and dosage responses immediately following ploidy change. Similar to what has been observed in previous studies, overall transcriptome size does not exhibit a simple doubling in response to genome doubling, and individual gene dosage responses are highly variable in all three accessions, indicating that expression is not strictly coupled with gene dosage. Nonetheless, putatively dosage balance-sensitive gene groups (Gene Ontology terms, metabolic networks, gene families, and predicted interacting proteins) exhibit smaller and more coordinated dosage responses than do putatively dosage-insensitive gene groups, suggesting that constraints on dosage balance operate immediately following whole-genome duplication and that duplicate gene retention patterns are shaped by selection to preserve dosage balance.


Assuntos
Arabidopsis/genética , Genes de Plantas , Ploidias , Transcrição Gênica , Mecanismo Genético de Compensação de Dose , Ecótipo , Dosagem de Genes , Duplicação Gênica , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Redes e Vias Metabólicas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
3.
Syst Biol ; 71(2): 476-489, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-34191012

RESUMO

The species tree paradigm that dominates current molecular systematic practice infers species trees from collections of sequences under assumptions of the multispecies coalescent (MSC), that is, that there is free recombination between the sequences and no (or very low) recombination within them. These coalescent genes (c-genes) are thus defined in an historical rather than molecular sense and can in theory be as large as an entire genome or as small as a single nucleotide. A debate about how to define c-genes centers on the contention that nuclear gene sequences used in many coalescent analyses undergo too much recombination, such that their introns comprise multiple c-genes, violating a key assumption of the MSC. Recently a similar argument has been made for the genes of plastid (e.g., chloroplast) and mitochondrial genomes, which for the last 30 or more years have been considered to represent a single c-gene for the purposes of phylogeny reconstruction because they are nonrecombining in an historical sense. Consequently, it has been suggested that these genomes should be analyzed using coalescent methods that treat their genes-over 70 protein-coding genes in the case of most plastid genomes (plastomes)-as independent estimates of species phylogeny, in contrast to the usual practice of concatenation, which is appropriate for generating gene trees. However, although recombination certainly occurs in the plastome, as has been recognized since the 1970's, it is unlikely to be phylogenetically relevant. This is because such historically effective recombination can only occur when plastomes with incongruent histories are brought together in the same plastid. However, plastids sort rapidly into different cell lineages and rarely fuse. Thus, because of plastid biology, the plastome is a more canonical c-gene than is the average multi-intron mammalian nuclear gene. The plastome should thus continue to be treated as a single estimate of the underlying species phylogeny, as should the mitochondrial genome. The implications of this long-held insight of molecular systematics for studies in the phylogenomic era are explored. [c-gene; coalescent gene; concatalescence; organelle genome; plastome; recombination; species tree.].


Assuntos
Genoma Mitocondrial , Genomas de Plastídeos , Animais , Evolução Molecular , Genoma Mitocondrial/genética , Genomas de Plastídeos/genética , Mamíferos/genética , Filogenia , Plastídeos/genética
4.
Plant J ; 105(3): 721-735, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33145857

RESUMO

The prevalence and recurrence of whole-genome duplication in plants and its major role in evolution have been well recognized. Despite great efforts, many aspects of genome evolution, particularly the temporal progression of genomic responses to allopolyploidy and the underlying mechanisms, remain poorly understood. The rice genus Oryza consists of both recently formed and older allopolyploid species, representing an attractive system for studying the genome evolution after allopolyploidy. In this study, through screening BAC libraries and sequencing and annotating the targeted BAC clones, we generated orthologous genomic sequences surrounding the DEP1 locus, a major grain yield QTL in cultivated rice, from four Oryza polyploids of various ages and their likely diploid genome donors or close relatives. Based on sequenced DEP1 region and published data from three other genomic regions, we investigated the temporal evolutionary dynamics of four polyploid genomes at both genetic and expression levels. In the recently formed BBCC polyploid, Oryza minuta, genome dominance was not observed and its short-term responses to allopolyploidy are mainly manifested as a high proportion of homoeologous gene pairs showing unequal expression. This could partly be explained by parental legacy, rewiring of divergent regulatory networks and epigenetic modulation. Moreover, we detected an ongoing diploidization process in this genus, and suggest that the expression divergence driven by changes of selective constraint probably plays a big role in the long-term diploidization. These findings add novel insights into our understanding of genome evolution after allopolyploidy, and could facilitate crop improvements through hybridization and polyploidization.


Assuntos
Genoma de Planta , Oryza/genética , Poliploidia , Cromossomos Artificiais Bacterianos , Elementos de DNA Transponíveis , Diploide , Evolução Molecular , Anotação de Sequência Molecular
5.
Plant Cell ; 30(10): 2308-2329, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30143539

RESUMO

Ploidy and size phenomena are observed to be correlated across several biological scales, from subcellular to organismal. Two kinds of ploidy change can affect plants. Whole-genome multiplication increases ploidy in whole plants and is broadly associated with increases in cell and organism size. Endoreduplication increases ploidy in individual cells. Ploidy increase is strongly correlated with increased cell size and nuclear volume. Here, we investigate scaling relationships between ploidy and size by simultaneously quantifying nuclear size, cell size, and organ size in sepals from an isogenic series of diploid, tetraploid, and octoploid Arabidopsis thaliana plants, each of which contains an internal endopolyploidy series. We find that pavement cell size and transcriptome size increase linearly with whole-organism ploidy, but organ area increases more modestly due to a compensatory decrease in cell number. We observe that cell size and nuclear size are maintained at a constant ratio; the value of this constant is similar in diploid and tetraploid plants and slightly lower in octoploid plants. However, cell size is maintained in a mutant with reduced nuclear size, indicating that cell size is scaled to cell ploidy rather than to nuclear size. These results shed light on how size is regulated in plants and how cells and organisms of differing sizes are generated by ploidy change.


Assuntos
Arabidopsis/citologia , Arabidopsis/genética , Flores/genética , Ploidias , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Núcleo Celular/genética , Tamanho Celular , Flores/anatomia & histologia , Flores/citologia , Regulação da Expressão Gênica de Plantas , Mutação , Proteínas Nucleares/genética , Células Vegetais/fisiologia , Plantas Geneticamente Modificadas
7.
BMC Genomics ; 19(1): 439, 2018 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-29871589

RESUMO

BACKGROUND: Kudzu, Pueraria montana var. lobata, is a woody vine native to Southeast Asia that has been introduced globally for cattle forage and erosion control. The vine is highly invasive in its introduced areas, including the southeastern US. Modern molecular marker resources are limited for the species, despite its importance. Transcriptomes for P. montana var. lobata and a second phaseoloid legume taxon previously ascribed to genus Pueraria, Neustanthus phaseoloides, were generated and mined for microsatellites and single nucleotide polymorphisms. RESULTS: Roche 454 sequencing of P. montana var. lobata and N. phaseoloides transcriptomes produced read numbers ranging from ~ 280,000 to ~ 420,000. Trinity assemblies produced an average of 17,491 contigs with mean lengths ranging from 639 bp to 994 bp. Transcriptome completeness, according to BUSCO, ranged between 64 and 77%. After vetting for primer design, there were 1646 expressed simple sequence repeats (eSSRs) identified in P. montana var. lobata and 1459 in N. phaseoloides. From these eSSRs, 17 identical primer pairs, representing inter-generic phaseoloid eSSRs, were created. Additionally, 13 primer pairs specific to P. montana var. lobata were also created. From these 30 primer pairs, a final set of seven primer pairs were used on 68 individuals of P. montana var. lobata for characterization across the US, China, and Japan. The populations exhibited from 20 to 43 alleles across the seven loci. We also conducted pairwise tests for high-confidence SNP discovery from the kudzu transcriptomes we sequenced and two previously sequenced P. montana var. lobata transcriptomes. Pairwise comparisons between P. montana var. lobata ranged from 358 to 24,475 SNPs, while comparisons between P. montana var. lobata and N. phaseoloides ranged from 5185 to 30,143 SNPs. CONCLUSIONS: The discovered molecular markers for kudzu provide a starting point for comparative genetic studies within phaseoloid legumes. This study both adds to the current genetic resources and presents the first available genomic resources for the invasive kudzu vine. Additionally, this study is the first to provide molecular evidence to support the hypothesis of Japan as a source of US kudzu and begins to narrow the origin of US kudzu to the central Japanese island of Honshu.


Assuntos
Perfilação da Expressão Gênica , Espécies Introduzidas , Repetições de Microssatélites/genética , Pueraria/crescimento & desenvolvimento , Pueraria/genética , Anotação de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Controle de Qualidade , Análise de Sequência
8.
Am J Bot ; 105(6): 1053-1066, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29985538

RESUMO

PREMISE OF THE STUDY: The genetic bottleneck of polyploid formation can be mitigated by multiple origins, gene flow, and recombination among different lineages. In crop plants with limited origins, efforts to increase genetic diversity have limitations. Here we used lineage recombination to increase genetic diversity in peanut, an allotetraploid likely of single origin, by crossing with a novel allopolyploid genotype and selecting improved lines. METHODS: Single backcross progeny from cultivated peanut × wild species-derived allotetraploid cross were studied over successive generations. Using genetic assumptions that encompass segmental allotetraploidy, we used single nucleotide polymorphisms and whole-genome sequence data to infer genome structures. KEY RESULTS: Selected lines, despite a high proportion of wild alleles, are agronomically adapted, productive, and with improved disease resistances. Wild alleles mostly substituted homologous segments of the peanut genome. Regions of dispersed wild alleles, characteristic of gene conversion, also occurred. However, wild chromosome segments sometimes replaced cultivated peanut's homeologous subgenome; A. ipaënsis B sometimes replaced A. hypogaea A subgenome (~0.6%), and A. duranensis replaced A. hypogaea B subgenome segments (~2%). Furthermore, some subgenome regions historically lost in cultivated peanut were "recovered" by wild chromosome segments (effectively reversing the "polyploid ratchet"). These processes resulted in lines with new genome structure variations. CONCLUSIONS: Genetic diversity was introduced by wild allele introgression, and by introducing new genome structure variations. These results highlight the special possibilities of segmental allotetraploidy and of using lineage recombination to increase genetic diversity in peanut, likely mirroring what occurs in natural segmental allopolyploids with multiple origins.


Assuntos
Arachis/genética , Hibridização Genética , Poliploidia , Alelos , Variação Genética , Recombinação Homóloga
9.
BMC Genomics ; 18(1): 409, 2017 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-28545396

RESUMO

BACKGROUND: The medicinal legume Mucuna pruriens (L.) DC. has attracted attention worldwide as a source of the anti-Parkinson's drug L-Dopa. It is also a popular green manure cover crop that offers many agronomic benefits including high protein content, nitrogen fixation and soil nutrients. The plant currently lacks genomic resources and there is limited knowledge on gene expression, metabolic pathways, and genetics of secondary metabolite production. Here, we present transcriptomic resources for M. pruriens, including a de novo transcriptome assembly and annotation, as well as differential transcript expression analyses between root, leaf, and pod tissues. We also develop microsatellite markers and analyze genetic diversity and population structure within a set of Indian germplasm accessions. RESULTS: One-hundred ninety-one million two hundred thirty-three thousand two hundred forty-two bp cleaned reads were assembled into 67,561 transcripts with mean length of 626 bp and N50 of 987 bp. Assembled sequences were annotated using BLASTX against public databases with over 80% of transcripts annotated. We identified 7,493 simple sequence repeat (SSR) motifs, including 787 polymorphic repeats between the parents of a mapping population. 134 SSRs from expressed sequenced tags (ESTs) were screened against 23 M. pruriens accessions from India, with 52 EST-SSRs retained after quality control. Population structure analysis using a Bayesian framework implemented in fastSTRUCTURE showed nearly similar groupings as with distance-based (neighbor-joining) and principal component analyses, with most of the accessions clustering per geographical origins. Pair-wise comparison of transcript expression in leaves, roots and pods identified 4,387 differentially expressed transcripts with the highest number occurring between roots and leaves. Differentially expressed transcripts were enriched with transcription factors and transcripts annotated as belonging to secondary metabolite pathways. CONCLUSIONS: The M. pruriens transcriptomic resources generated in this study provide foundational resources for gene discovery and development of molecular markers. Polymorphic SSRs identified can be used for genetic diversity, marker-trait analyses, and development of functional markers for crop improvement. The results of differential expression studies can be used to investigate genes involved in L-Dopa synthesis and other key metabolic pathways in M. pruriens.


Assuntos
Etiquetas de Sequências Expressas/metabolismo , Perfilação da Expressão Gênica , Repetições de Microssatélites/genética , Anotação de Sequência Molecular , Mucuna/genética , Mineração de Dados , Polimorfismo Genético , RNA Mensageiro/genética , Fatores de Transcrição/genética
10.
Plant Cell ; 26(1): 136-50, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24488964

RESUMO

All flowering plants have experienced repeated rounds of polyploidy (whole-genome duplication), which has in turn driven the evolution of novel phenotypes and ecological tolerances and been a major driver of speciation. The effects of polyploidy on gene expression have been studied extensively at the level of transcription and, to a much lesser extent, at the level of the steady state proteome, but not at the level of translation. We used polysome profiling by RNA-Seq to quantify translational regulation of gene expression in a recently formed (∼100,000 years ago) allotetraploid (Glycine dolichocarpa) closely related to the cultivated soybean (Glycine max). We show that there is a high level of concordance between the allopolyploid transcriptome and translatome overall but that at least one-quarter of the transcriptome is translationally regulated. We further show that translational regulation preferentially targets genes involved in transcription, translation, and photosynthesis, causes regional and possibly whole-chromosome shifts in expression bias between duplicated genes (homoeologs), and reduces transcriptional differences between the polyploid and its diploid progenitors, possibly attenuating misregulation resulting from genome merger and/or doubling. Finally, translational regulation correlates positively with long-term retention of homoeologs from a paleopolyploidy event, suggesting that it plays a significant role in polyploid evolution.


Assuntos
Fabaceae/genética , Regulação da Expressão Gênica de Plantas , Poliploidia , Biossíntese de Proteínas , Transcriptoma
11.
Nature ; 480(7378): 520-4, 2011 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-22089132

RESUMO

Legumes (Fabaceae or Leguminosae) are unique among cultivated plants for their ability to carry out endosymbiotic nitrogen fixation with rhizobial bacteria, a process that takes place in a specialized structure known as the nodule. Legumes belong to one of the two main groups of eurosids, the Fabidae, which includes most species capable of endosymbiotic nitrogen fixation. Legumes comprise several evolutionary lineages derived from a common ancestor 60 million years ago (Myr ago). Papilionoids are the largest clade, dating nearly to the origin of legumes and containing most cultivated species. Medicago truncatula is a long-established model for the study of legume biology. Here we describe the draft sequence of the M. truncatula euchromatin based on a recently completed BAC assembly supplemented with Illumina shotgun sequence, together capturing ∼94% of all M. truncatula genes. A whole-genome duplication (WGD) approximately 58 Myr ago had a major role in shaping the M. truncatula genome and thereby contributed to the evolution of endosymbiotic nitrogen fixation. Subsequent to the WGD, the M. truncatula genome experienced higher levels of rearrangement than two other sequenced legumes, Glycine max and Lotus japonicus. M. truncatula is a close relative of alfalfa (Medicago sativa), a widely cultivated crop with limited genomics tools and complex autotetraploid genetics. As such, the M. truncatula genome sequence provides significant opportunities to expand alfalfa's genomic toolbox.


Assuntos
Evolução Biológica , Genoma de Planta , Medicago truncatula/genética , Medicago truncatula/microbiologia , Rhizobium/fisiologia , Simbiose , Dados de Sequência Molecular , Fixação de Nitrogênio/genética , Glycine max/genética , Sintenia , Vitis/genética
12.
Plant Foods Hum Nutr ; 72(3): 225-235, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28866817

RESUMO

Winged bean, Psophocarpus tetragonolobus (L.) DC., is analogous to soybean in yield and nutritional quality, proving a valuable alternative to soybean in tropical regions of the world. The presence of anti-nutritional factors and high costs associated with indeterminate plant habit have been major concerns in this crop. But occurrence of good genetic variability in germplasm collections offers precious resources for winged bean breeding. However, lack of germplasm characterization is hindering such efforts. From a genomic standpoint, winged bean has been little studied despite rapid advancement in legume genomics in the last decade. Exploiting modern genomics/breeding approaches for genetic resource characterization and the breeding of early maturing, high yielding, determinate varieties which are disease resistant and free of anti-nutritional factors along with developing consumer friendly value-added products of local significance are great challenges and opportunities in the future that would boost cultivation of winged bean in the tropics. We review past efforts and future prospects towards winged bean improvement.


Assuntos
Fabaceae/genética , Agricultura , Biotecnologia , Marcadores Genéticos/genética , Genômica , Valor Nutritivo
13.
Chromosoma ; 124(1): 27-43, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25421950

RESUMO

The number of RNA molecules per cell (transcriptome size) is highly variable, differing among and within cell types depending on cell size, stage of the cell cycle, ploidy level, age, disease state, and growth condition. Such variation has been observed at the level of total RNA, ribosomal RNA, messenger RNA (mRNA), and the polyadenylated fraction of mRNA, and these distinct RNA species can also vary in abundance with respect to each other. This variation in transcriptome size has been largely ignored or overlooked, and in fact, standard data normalization procedures for transcript profiling experiments implicitly assume that mRNA transcriptome size is constant. Consequently, variation in transcriptome size has important technical implications for such experiments, as well as profound biological implications for the affected cells and underlying genomes. Here, we review what is known about transcriptome size variation, explore how ignoring this variation introduces systematic bias into standard expression profiling experiments, and present examples of how such biases have led to erroneous conclusions in expression studies of sex chromosome dosage compensation, cancer, Rett syndrome, embryonic development, aging, and polyploidy. We also discuss how quantifying transcriptome size will help to elucidate the selective forces underlying patterns of gene and genome evolution and review the evidence that cells exert tight control over transcriptome size in order to maintain cell size homeostasis and to optimize chemical reactions within the cell, such that loss of control over transcriptome size is associated with cancer and aging. Thus, transcriptome size is an important phenotype in its own right. Finally, we discuss strategies for quantifying transcriptome size and individual gene dosage responses in order to account for and better understand this important biological phenomenon.


Assuntos
Transcriptoma , Bactérias/genética , Mecanismo Genético de Compensação de Dose , Eucariotos/genética , Evolução Molecular , Feminino , Dosagem de Genes , Perfilação da Expressão Gênica , Humanos , Masculino , Poliploidia
14.
Mol Biol Evol ; 32(1): 193-210, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25349287

RESUMO

Unresolved questions about evolution of the large and diverse legume family include the timing of polyploidy (whole-genome duplication; WGDs) relative to the origin of the major lineages within the Fabaceae and to the origin of symbiotic nitrogen fixation. Previous work has established that a WGD affects most lineages in the Papilionoideae and occurred sometime after the divergence of the papilionoid and mimosoid clades, but the exact timing has been unknown. The history of WGD has also not been established for legume lineages outside the Papilionoideae. We investigated the presence and timing of WGDs in the legumes by querying thousands of phylogenetic trees constructed from transcriptome and genome data from 20 diverse legumes and 17 outgroup species. The timing of duplications in the gene trees indicates that the papilionoid WGD occurred in the common ancestor of all papilionoids. The earliest diverging lineages of the Papilionoideae include both nodulating taxa, such as the genistoids (e.g., lupin), dalbergioids (e.g., peanut), phaseoloids (e.g., beans), and galegoids (=Hologalegina, e.g., clovers), and clades with nonnodulating taxa including Xanthocercis and Cladrastis (evaluated in this study). We also found evidence for several independent WGDs near the base of other major legume lineages, including the Mimosoideae-Cassiinae-Caesalpinieae (MCC), Detarieae, and Cercideae clades. Nodulation is found in the MCC and papilionoid clades, both of which experienced ancestral WGDs. However, there are numerous nonnodulating lineages in both clades, making it unclear whether the phylogenetic distribution of nodulation is due to independent gains or a single origin followed by multiple losses.


Assuntos
Fabaceae/classificação , Fabaceae/genética , Tetraploidia , Evolução Molecular , Fabaceae/fisiologia , Genoma de Planta , Família Multigênica , Mutação , Fixação de Nitrogênio , Filogenia , Simbiose
15.
New Phytol ; 212(4): 1083-1093, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27418296

RESUMO

Retention or loss of paralogs following duplication correlates strongly with the function of the gene and whether the gene was duplicated by whole-genome duplication (WGD) or by small-scale duplication. Selection on relative gene dosage (to maintain proper stoichiometry among interacting proteins) has been invoked to explain these patterns of duplicate gene retention and loss. In order for gene dosage to be visible to natural selection, there must necessarily be a correlation between gene copy number and gene expression level (transcript abundance), but this has rarely been examined. We used RNA-Seq data from seven Glycine subgenus Glycine species (three recently formed allotetraploids and their four diploid progenitors) to determine if expression patterns and gene dosage responses at the level of transcription are consistent with selection on relative gene dosage. As predicted, metabolic pathways and gene ontologies that are putatively dosage-sensitive based on duplication history exhibited reduced expression variance across species, and more coordinated expression responses to recent WGD, relative to putatively dosage-insensitive networks. We conclude that selection on relative dosage has played an important role in shaping gene networks in Glycine.


Assuntos
Diploide , Dosagem de Genes , Regulação da Expressão Gênica de Plantas , Glycine max/genética , Poliploidia , Duplicação Gênica , Ontologia Genética , Redes Reguladoras de Genes , Genes de Plantas
16.
Am J Bot ; 103(10): 1771-1782, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27562208

RESUMO

PREMISE OF THE STUDY: Previous studies have shown that polyploidy can alter biotic interactions, and it has been suggested that these effects may contribute to the increased ability for colonization of new habitats shown by many allopolyploids. Little is known, however, about the effects of allopolyploidy, which combines hybridity and genome doubling, on symbiotic interactions with rhizobial bacteria. METHODS: We examined interactions of the allopolyploid Glycine dolichocarpa (designated T2) with novel rhizobial partners, such as might occur in a context of colonization, and compared these with the responses of its diploid progenitors, G. tomentella (D3) and G. syndetika (D4). We assessed root hair response, nodule formation, nodule mass, nodule number, and plant biomass. KEY RESULTS: The allopolyploid (T2) showed a greater root hair deformation response when exposed to rhizobia, compared with either diploid. T2 had a greater probability of forming nodules with NGR234 compared with diploid D4, and greater total nodule mass per nodulated plant compared with diploid D3. T2 also had greater plant biomass responses to nitrogen and when exposed to NGR234. CONCLUSIONS: The allopolyploid is characterized by transgressive responses to rhizobia for some variables, while also combining certain parental diploid responses such that its capacity for interactions with rhizobia appears to be greater than for either diploid progenitor. This overall enhanced nodulation capacity and the ability to make greater gains from exposure to both rhizobia and additional nitrogen indicate a greater potential of the allopolyploid to benefit from these factors both generally and in a context of colonization.


Assuntos
Bradyrhizobium/fisiologia , Fabaceae/fisiologia , Nodulação , Sinorhizobium/fisiologia , Biomassa , Fabaceae/genética , Fabaceae/microbiologia , Poliploidia
17.
Am J Bot ; 107(8): 1097-1100, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32737992
18.
Mol Phylogenet Evol ; 76: 49-66, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24631856

RESUMO

Amorpha L. (false indigos and lead plants) is a North American legume genus of 16 species of shrubs, which is most diverse in the southeastern United States and distinctive due to the reduction of the corolla to a single petal. Most species have limited distributions, but the tetraploid A. fruticosa species complex is widely distributed and its range overlaps those of all of the other species. Morphological variation in the genus is characterized by gradation of characters among species and it has been the subject of repeated taxonomic study due to the difficulty in delimiting species, especially among A. fruticosa and allies. This study presents the first phylogenetic and network analyses for evaluation of relationships amongst Amorpha species based on three non-coding plastome regions (trnD-trnT, trnH-psbA, petN-psbM) and two low-copy nuclear genes (CNGC5, minD). Plastid DNA analyses supported a monophyletic Amorpha with Parryella filifolia and Errazurizia rotundata as successive sister lineages; however, nuclear gene analyses supported the nesting of these two species and thus a paraphyletic Amorpha. Relationships among species of Amorpha were best resolved in the plastid DNA phylogeny and in most cases were concordant with expectations based on morphology. Relationships based on the nuclear gene phylogenies were less clear due to lack of informative variation (CNGC5) or conflict in the data set (minD). The origins of A. fruticosa were unclear, but the plastid phylogeny revealed that this species shares the same or similar plastid haplotype as other species in a geographic region. Putative recombination of diploid species' alleles was evident in the minD-like network. Phenotypic plasticity in combination with gene flow into this species from different diploids, or even tetraploids, across its range may account for the incredible morphological diversity of the A. fruticosa species complex. Putative progenitors for two other suspected allotetraploid species, A. confusa and A. crenulata, were identified as A. fruticosa and A. herbacea.


Assuntos
Fabaceae/genética , Filogenia , Poliploidia , Núcleo Celular/genética , Diploide , Fluxo Gênico , Plastídeos/genética , Sudeste dos Estados Unidos , Tetraploidia
19.
Am J Bot ; 101(4): 710-21, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24699543

RESUMO

PREMISE OF STUDY: Polyploid plants, when compared with diploids, show similar molecular, morphological, physiological, and ecological tendencies across unrelated groups, but the degree to which these form "rules" of polyploid evolution are unclear. The Glycine (Leguminosae) allopolyploid complex affords the opportunity to test whether polyploidy in similar genetic backgrounds produces similar effects on geographical range or climatic space. METHODS: We used information on locality presence of four closely related Glycine allopolyploid species and their diploid progenitors to build models of the potentially available Australian ranges based on climate using Maxent3.3.3k. Principal coordinate analysis was used to characterize the multidimensional climate space occupied by each species. KEY RESULTS: Each of the four Glycine allopolyploids showed intermediacy in potential geographical space and in ecological space, relative to its diploid progenitors. The four allopolyploids did not have consistently larger ranges than their progenitors, though all four occupied a portion of climate niche space not available to its progenitors. The polyploids also differed in their exploitation of potentially available geographical range. Australian ranges and environmental space did not correlate with greater colonizing ability in these polyploids. CONCLUSIONS: The four Glycine allopolyploids do not show many common range- or climate-related features, other than intermediacy. Thus, despite their similar genetic and evolutionary backgrounds, polyploidy has not produced convergent ecological effects.


Assuntos
Clima , Ecossistema , Glicina/fisiologia , Modelos Biológicos , Poliploidia , Austrália , Evolução Biológica , Diploide , Geografia , Glicina/genética
20.
Am J Bot ; 101(10): 1651-65, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25326613

RESUMO

The accumulation of over 30 years of basic research on the biology, genetic variation, and evolution of the wild perennial relatives of soybean (Glycine max) provides a foundation to improve cultivated soybean. The cultivated soybean and its wild progenitor, G. soja, have a center of origin in eastern Asia and are the only two species in the annual subgenus Soja. Systematic and evolutionary studies of the ca. 30 perennial species of subgenus Glycine, native to Australia, have benefited from the availability of the G. max genomic sequence. The perennial species harbor many traits of interest to soybean breeders, among them resistance to major soybean pathogens such as cyst nematode and leaf rust. New species in the Australian subgenus continue to be described, due to the collection of new material and to insights gleaned through systematic studies of accessions in germplasm collections. Ongoing studies in perennial species focus on genomic regions that contain genes for key traits relevant to soybean breeding. These comparisons also include the homoeologous regions that are the result of polyploidy in the common ancestor of all Glycine species. Subgenus Glycine includes a complex of recently formed allopolyploids that are the focus of studies aimed at elucidating genomic, transcriptomic, physiological, taxonomic, morphological, developmental, and ecological processes related to polyploid evolution. Here we review what has been learned over the past 30 years and outline ongoing work on photosynthesis, nitrogen fixation, and floral biology, much of it drawing on new technologies and resources.


Assuntos
Evolução Biológica , Flores , Variação Genética , Glycine max/genética , Fixação de Nitrogênio/genética , Fotossíntese/genética , Poliploidia , Austrália , Produtos Agrícolas/genética , Genoma de Planta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA