RESUMO
Plasmodium falciparum reticulocyte-binding protein homolog 5 (RH5) is the most advanced blood-stage malaria vaccine candidate and is being evaluated for efficacy in endemic regions, emphasizing the need to study the underlying antibody response to RH5 during natural infection, which could augment or counteract responses to vaccination. Here, we found that RH5-reactive B cells were rare, and circulating immunoglobulin G (IgG) responses to RH5 were short-lived in malaria-exposed Malian individuals, despite repeated infections over multiple years. RH5-specific monoclonal antibodies isolated from eight malaria-exposed individuals mostly targeted non-neutralizing epitopes, in contrast to antibodies isolated from five RH5-vaccinated, malaria-naive UK individuals. However, MAD8-151 and MAD8-502, isolated from two malaria-exposed Malian individuals, were among the most potent neutralizers out of 186 antibodies from both cohorts and targeted the same epitopes as the most potent vaccine-induced antibodies. These results suggest that natural malaria infection may boost RH5-vaccine-induced responses and provide a clear strategy for the development of next-generation RH5 vaccines.
Assuntos
Anticorpos Neutralizantes , Anticorpos Antiprotozoários , Antígenos de Protozoários , Vacinas Antimaláricas , Malária Falciparum , Plasmodium falciparum , Humanos , Anticorpos Neutralizantes/imunologia , Plasmodium falciparum/imunologia , Malária Falciparum/imunologia , Malária Falciparum/prevenção & controle , Malária Falciparum/parasitologia , Vacinas Antimaláricas/imunologia , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Imunoglobulina G/imunologia , Imunoglobulina G/sangue , Proteínas de Protozoários/imunologia , Anticorpos Monoclonais/imunologia , Adulto , Linfócitos B/imunologia , Epitopos/imunologia , Feminino , Mali , Proteínas de Transporte/imunologia , Masculino , AdolescenteRESUMO
The highly conserved and essential Plasmodium falciparum reticulocyte-binding protein homolog 5 (PfRH5) has emerged as the leading target for vaccines against the disease-causing blood stage of malaria. However, the features of the human vaccine-induced antibody response that confer highly potent inhibition of malaria parasite invasion into red blood cells are not well defined. Here, we characterize 236 human IgG monoclonal antibodies, derived from 15 donors, induced by the most advanced PfRH5 vaccine. We define the antigenic landscape of this molecule and establish that epitope specificity, antibody association rate, and intra-PfRH5 antibody interactions are key determinants of functional anti-parasitic potency. In addition, we identify a germline IgG gene combination that results in an exceptionally potent class of antibody and demonstrate its prophylactic potential to protect against P. falciparum parasite challenge in vivo. This comprehensive dataset provides a framework to guide rational design of next-generation vaccines and prophylactic antibodies to protect against blood-stage malaria.
Assuntos
Anticorpos Monoclonais , Anticorpos Antiprotozoários , Antígenos de Protozoários , Imunoglobulina G , Vacinas Antimaláricas , Malária Falciparum , Plasmodium falciparum , Proteínas de Protozoários , Animais , Humanos , Camundongos , Anticorpos Monoclonais/imunologia , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Proteínas de Transporte/imunologia , Epitopos/imunologia , Eritrócitos/parasitologia , Eritrócitos/imunologia , Imunoglobulina G/imunologia , Vacinas Antimaláricas/imunologia , Malária Falciparum/imunologia , Malária Falciparum/prevenção & controle , Malária Falciparum/parasitologia , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologiaRESUMO
The Plasmodium falciparum reticulocyte-binding protein homolog 5 (PfRH5) is the leading target for next-generation vaccines against the disease-causing blood-stage of malaria. However, little is known about how human antibodies confer functional immunity against this antigen. We isolated a panel of human monoclonal antibodies (mAbs) against PfRH5 from peripheral blood B cells from vaccinees in the first clinical trial of a PfRH5-based vaccine. We identified a subset of mAbs with neutralizing activity that bind to three distinct sites and another subset of mAbs that are non-functional, or even antagonistic to neutralizing antibodies. We also identify the epitope of a novel group of non-neutralizing antibodies that significantly reduce the speed of red blood cell invasion by the merozoite, thereby potentiating the effect of all neutralizing PfRH5 antibodies as well as synergizing with antibodies targeting other malaria invasion proteins. Our results provide a roadmap for structure-guided vaccine development to maximize antibody efficacy against blood-stage malaria.
Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antiprotozoários/imunologia , Eritrócitos/parasitologia , Vacinas Antimaláricas/imunologia , Malária Falciparum/imunologia , Plasmodium falciparum/imunologia , Adolescente , Adulto , Animais , Sítios de Ligação , Proteínas de Transporte/imunologia , Reações Cruzadas/imunologia , Epitopos/imunologia , Feminino , Células HEK293 , Voluntários Saudáveis , Humanos , Malária Falciparum/parasitologia , Masculino , Merozoítos/fisiologia , Pessoa de Meia-Idade , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/imunologia , Coelhos , Ratos , Ratos Sprague-Dawley , Adulto JovemRESUMO
The symptoms of malaria occur during the blood stage of infection, when parasites invade and replicate within human erythrocytes. The PfPCRCR complex1, containing PfRH5 (refs. 2,3), PfCyRPA, PfRIPR, PfCSS and PfPTRAMP, is essential for erythrocyte invasion by the deadliest human malaria parasite, Plasmodium falciparum. Invasion can be prevented by antibodies3-6 or nanobodies1 against each of these conserved proteins, making them the leading blood-stage malaria vaccine candidates. However, little is known about how PfPCRCR functions during invasion. Here we present the structure of the PfRCR complex7,8, containing PfRH5, PfCyRPA and PfRIPR, determined by cryogenic-electron microscopy. We test the hypothesis that PfRH5 opens to insert into the membrane9, instead showing that a rigid, disulfide-locked PfRH5 can mediate efficient erythrocyte invasion. We show, through modelling and an erythrocyte-binding assay, that PfCyRPA-binding antibodies5 neutralize invasion through a steric mechanism. We determine the structure of PfRIPR, showing that it consists of an ordered, multidomain core flexibly linked to an elongated tail. We also show that the elongated tail of PfRIPR, which is the target of growth-neutralizing antibodies6, binds to the PfCSS-PfPTRAMP complex on the parasite membrane. A modular PfRIPR is therefore linked to the merozoite membrane through an elongated tail, and its structured core presents PfCyRPA and PfRH5 to interact with erythrocyte receptors. This provides fresh insight into the molecular mechanism of erythrocyte invasion and opens the way to new approaches in rational vaccine design.
Assuntos
Eritrócitos , Malária Falciparum , Complexos Multiproteicos , Parasitos , Plasmodium falciparum , Proteínas de Protozoários , Animais , Humanos , Anticorpos Neutralizantes/imunologia , Antígenos de Protozoários/química , Antígenos de Protozoários/imunologia , Microscopia Crioeletrônica , Dissulfetos/química , Dissulfetos/metabolismo , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Vacinas Antimaláricas/imunologia , Malária Falciparum/imunologia , Malária Falciparum/metabolismo , Malária Falciparum/parasitologia , Malária Falciparum/patologia , Merozoítos/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/imunologia , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Parasitos/metabolismo , Parasitos/patogenicidade , Plasmodium falciparum/metabolismo , Plasmodium falciparum/patogenicidade , Proteínas de Protozoários/química , Proteínas de Protozoários/imunologia , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/ultraestruturaRESUMO
Malaria and iron deficiency are major global health problems with extensive epidemiological overlap. Iron deficiency-induced anaemia can protect the host from malaria by limiting parasite growth. On the other hand, iron deficiency can significantly disrupt immune cell function. However, the impact of host cell iron scarcity beyond anaemia remains elusive in malaria. To address this, we employed a transgenic mouse model carrying a mutation in the transferrin receptor (TfrcY20H/Y20H), which limits the ability of cells to internalise iron from plasma. At homeostasis TfrcY20H/Y20H mice appear healthy and are not anaemic. However, TfrcY20H/Y20H mice infected with Plasmodium chabaudi chabaudi AS showed significantly higher peak parasitaemia and body weight loss. We found that TfrcY20H/Y20H mice displayed a similar trajectory of malaria-induced anaemia as wild-type mice, and elevated circulating iron did not increase peak parasitaemia. Instead, P. chabaudi infected TfrcY20H/Y20H mice had an impaired innate and adaptive immune response, marked by decreased cell proliferation and cytokine production. Moreover, we demonstrated that these immune cell impairments were cell-intrinsic, as ex vivo iron supplementation fully recovered CD4+ T cell and B cell function. Despite the inhibited immune response and increased parasitaemia, TfrcY20H/Y20H mice displayed mitigated liver damage, characterised by decreased parasite sequestration in the liver and an attenuated hepatic immune response. Together, these results show that host cell iron scarcity inhibits the immune response but prevents excessive hepatic tissue damage during malaria infection. These divergent effects shed light on the role of iron in the complex balance between protection and pathology in malaria.
Assuntos
Anemia , Deficiências de Ferro , Malária , Plasmodium chabaudi , Animais , Camundongos , Ferro , Malária/parasitologia , Imunidade , Plasmodium chabaudi/fisiologiaRESUMO
The Plasmodium falciparum reticulocyte-binding protein homolog 5 (PfRH5) is the current leading blood-stage malaria vaccine candidate. PfRH5 functions as part of the pentameric PCRCR complex containing PTRAMP, CSS, PfCyRPA and PfRIPR, all of which are essential for infection of human red blood cells (RBCs). To trigger RBC invasion, PfRH5 engages with RBC protein basigin in a step termed the RH5-basigin binding stage. Although we know increasingly more about how antibodies specific for PfRH5 can block invasion, much less is known about how antibodies recognizing other members of the PCRCR complex can inhibit invasion. To address this, we performed live cell imaging using monoclonal antibodies (mAbs) which bind PfRH5 and PfCyRPA. We measured the degree and timing of the invasion inhibition, the stage at which it occurred, as well as subsequent events. We show that parasite invasion is blocked by individual mAbs, and the degree of inhibition is enhanced when combining a mAb specific for PfRH5 with one binding PfCyRPA. In addition to directly establishing the invasion-blocking capacity of the mAbs, we identified a secondary action of certain mAbs on extracellular parasites that had not yet invaded where the mAbs appeared to inactivate the parasites by triggering a developmental pathway normally only seen after successful invasion. These findings suggest that epitopes within the PfCyRPA-PfRH5 sub-complex that elicit these dual responses may be more effective immunogens than neighboring epitopes by both blocking parasites from invading and rapidly inactivating extracellular parasites. These two protective mechanisms, prevention of invasion and inactivation of uninvaded parasites, resulting from antibody to a single epitope indicate a possible route to the development of more effective vaccines.
Assuntos
Basigina , Merozoítos , Humanos , Animais , Plasmodium falciparum , Anticorpos Monoclonais , EpitoposRESUMO
Pro-inflammatory immune responses are rapidly suppressed during blood-stage malaria but the molecular mechanisms driving this regulation are still incompletely understood. In this study, we show that the co-inhibitory receptors TIGIT and PD-1 are upregulated and co-expressed by antigen-specific CD4+ T cells (ovalbumin-specific OT-II cells) during non-lethal Plasmodium yoelii expressing ovalbumin (PyNL-OVA) blood-stage infection. Synergistic blockade of TIGIT and PD-L1, but not individual blockade of each receptor, during the early stages of infection significantly improved parasite control during the peak stages (days 10-15) of infection. Mechanistically, this protection was correlated with significantly increased plasma levels of IFN-γ, TNF, and IL-2, and an increase in the frequencies of IFN-γ-producing antigen-specific T-bet+ CD4+ T cells (OT-II cells), but not antigen-specific CD8+ T cells (OT-I cells), along with expansion of the splenic red pulp and monocyte-derived macrophage populations. Collectively, our study identifies a novel role for TIGIT in combination with the PD1-PD-L1 axis in regulating specific components of the pro-inflammatory immune response and restricting parasite control during the acute stages of blood-stage PyNL infection.
RESUMO
BACKGROUND: Plasmodium vivax has been more resistant to various control measures than Plasmodium falciparum malaria because of its greater transmissibility and ability to produce latent parasite forms. Therefore, developing P. vivax vaccines and therapeutic monoclonal antibodies (humAbs) remains a high priority. The Duffy antigen receptor for chemokines (DARC) expressed on erythrocytes is central to P. vivax invasion of reticulocytes. P. vivax expresses a Duffy binding protein (PvDBP) on merozoites, a DARC ligand, and the DARC: PvDBP interaction is critical for P. vivax blood stage malaria. Therefore, PvDBP is a leading vaccine candidate for P. vivax and a target for therapeutic human monoclonal antibodies (humAbs). METHODS: Here, the functional activity of humAbs derived from naturally exposed and vaccinated individuals are compared for the first time using easily cultured Plasmodium knowlesi (P. knowlesi) that had been genetically modified to replace its endogenous PkDBP orthologue with PvDBP to create a transgenic parasite, PkPvDBPOR. This transgenic parasite requires DARC to invade human erythrocytes but is not reticulocyte restricted. This model was used to evaluate the invasion inhibition potential of 12 humAbs (9 naturally acquired; 3 vaccine-induced) targeting PvDBP individually and in combinations using growth inhibition assays (GIAs). RESULTS: The PvDBP-specific humAbs demonstrated 70-100% inhibition of PkPvDBPOR invasion with the IC50 values ranging from 51 to 338 µg/mL for the 9 naturally acquired (NA) humAbs and 33 to 99 µg/ml for the 3 vaccine-induced (VI) humAbs. To evaluate antagonistic, additive, or synergistic effects, six pairwise combinations were performed using select humAbs. Of these combinations tested, one NA/NA (099100/094083) combination demonstrated relatively strong additive inhibition between 10 and 100 µg/mL; all combinations of NA and VI humAbs showed additive inhibition at concentrations below 25 µg/mL and antagonism at higher concentrations. None of the humAb combinations showed synergy. Invasion inhibition efficacy by some mAbs shown with PkPvDBPOR was closely replicated using P. vivax clinical isolates. CONCLUSION: The PkPvDBPOR transgenic model is a robust surrogate of P. vivax to assess invasion and growth inhibition of human monoclonal Abs recognizing PvDBP individually and in combination. There was no synergistic interaction for growth inhibition with the humAbs tested here that target different epitopes or subdomains of PvDBP, suggesting little benefit in clinical trials using combinations of these humAbs.
Assuntos
Vacinas Antimaláricas , Malária Vivax , Plasmodium knowlesi , Animais , Humanos , Plasmodium vivax , Anticorpos Antiprotozoários , Antígenos de Protozoários , Proteínas de Protozoários/metabolismo , Malária Vivax/parasitologia , Eritrócitos/parasitologia , Animais Geneticamente Modificados , Sistema do Grupo Sanguíneo Duffy/metabolismoRESUMO
BACKGROUND: For blood-stage malaria vaccine development, the in vitro growth inhibition assay (GIA) has been widely used to evaluate functionality of vaccine-induced antibodies (Ab), and Plasmodium falciparum reticulocyte-binding protein homolog 5 (RH5) is a leading blood-stage antigen. However, precision, also called "error of assay (EoA)", in GIA readouts and the source of EoA has not been evaluated systematically. METHODS: In the Main GIA experiment, 4 different cultures of P. falciparum 3D7 parasites were prepared with red blood cells (RBC) collected from 4 different donors. For each culture, 7 different anti-RH5 Ab (either monoclonal or polyclonal Ab) were tested by GIA at two concentrations on three different days (168 data points). To evaluate sources of EoA in % inhibition in GIA (%GIA), a linear model fit was conducted including donor (source of RBC) and day of GIA as independent variables. In addition, 180 human anti-RH5 polyclonal Ab were tested in a Clinical GIA experiment, where each Ab was tested at multiple concentrations in at least 3 independent GIAs using different RBCs (5,093 data points). The standard deviation (sd) in %GIA and in GIA50 (Ab concentration that gave 50%GIA) readouts, and impact of repeat assays on 95% confidence interval (95%CI) of these readouts was estimated. RESULTS: The Main GIA experiment revealed that the RBC donor effect was much larger than the day effect, and an obvious donor effect was also observed in the Clinical GIA experiment. Both %GIA and log-transformed GIA50 data reasonably fit a constant sd model, and sd of %GIA and log-transformed GIA50 measurements were calculated as 7.54 and 0.206, respectively. Taking the average of three repeat assays (using three different RBCs) reduces the 95%CI width in %GIA or in GIA50 measurements by ~ half compared to a single assay. CONCLUSIONS: The RBC donor effect (donor-to-donor variance on the same day) in GIA was much bigger than the day effect (day-to-day variance using the same donor's RBC) at least for the RH5 Ab evaluated in this study; thus, future GIA studies should consider the donor effect. In addition, the 95%CI for %GIA and GIA50 shown here help when comparing GIA results from different samples/groups/studies; therefore, this study supports future malaria blood-stage vaccine development.
Assuntos
Vacinas Antimaláricas , Malária Falciparum , Humanos , Plasmodium falciparum , Anticorpos Antiprotozoários , Malária Falciparum/parasitologia , Eritrócitos/parasitologia , Anticorpos Antivirais , Antígenos de ProtozoáriosRESUMO
Adenovirus vector vaccines have been widely and successfully deployed in response to coronavirus disease 2019 (COVID-19). However, despite inducing potent T cell immunity, improvement of vaccine-specific antibody responses upon homologous boosting is modest compared with other technologies. Here, we describe a system enabling modular decoration of adenovirus capsid surfaces with antigens and demonstrate potent induction of humoral immunity against these displayed antigens. Ligand attachment via a covalent bond was achieved using a protein superglue, DogTag/DogCatcher (similar to SpyTag/SpyCatcher), in a rapid and spontaneous reaction requiring only co-incubation of ligand and vector components. DogTag was inserted into surface-exposed loops in the adenovirus hexon protein to allow attachment of DogCatcher-fused ligands on virus particles. Efficient coverage of the capsid surface was achieved using various ligands, with vector infectivity retained in each case. Capsid decoration shielded particles from vector neutralizing antibodies. In prime-boost regimens, adenovirus vectors decorated with the receptor-binding domain of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) spike induced >10-fold higher SARS-CoV-2 neutralization titers compared with an undecorated vector encoding spike. Importantly, decorated vectors achieved equivalent or superior T cell immunogenicity against encoded antigens compared with undecorated vectors. We propose capsid decoration using protein superglues as a novel strategy to improve efficacy and boostability of adenovirus-based vaccines and therapeutics.
Assuntos
Vacinas contra Adenovirus , COVID-19 , Humanos , SARS-CoV-2 , Imunidade Humoral , Ligantes , COVID-19/prevenção & controleRESUMO
Erythroferrone (ERFE) is produced by erythroblasts in response to erythropoietin (EPO) and acts in the liver to prevent hepcidin stimulation by BMP6. Hepcidin suppression allows for the mobilization of iron to the bone marrow for the production of red blood cells. Aberrantly high circulating ERFE in conditions of stress erythropoiesis, such as in patients with ß-thalassemia, promotes the tissue iron accumulation that substantially contributes to morbidity in these patients. Here we developed antibodies against ERFE to prevent hepcidin suppression and to correct the iron loading phenotype in a mouse model of ß-thalassemia [Hbb(th3/+) mice] and used these antibodies as tools to further characterize ERFE's mechanism of action. We show that ERFE binds to BMP6 with nanomolar affinity and binds BMP2 and BMP4 with somewhat weaker affinities. We found that BMP6 binds the N-terminal domain of ERFE, and a polypeptide derived from the N terminus of ERFE was sufficient to cause hepcidin suppression in Huh7 hepatoma cells and in wild-type mice. Anti-ERFE antibodies targeting the N-terminal domain prevented hepcidin suppression in ERFE-treated Huh7 cells and in EPO-treated mice. Finally, we observed a decrease in splenomegaly and serum and liver iron in anti-ERFE-treated Hbb(th3/+) mice, accompanied by an increase in red blood cells and hemoglobin and a decrease in reticulocyte counts. In summary, we show that ERFE binds BMP6 directly and with high affinity, and that antibodies targeting the N-terminal domain of ERFE that prevent ERFE-BMP6 interactions constitute a potential therapeutic tool for iron loading anemias.
Assuntos
Anticorpos Neutralizantes/uso terapêutico , Citocinas/antagonistas & inibidores , Hepcidinas/metabolismo , Proteínas Musculares/antagonistas & inibidores , Talassemia/tratamento farmacológico , Animais , Anticorpos Neutralizantes/farmacologia , Linhagem Celular , Citocinas/química , Citocinas/metabolismo , Células HEK293 , Humanos , Ferro/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Proteínas Musculares/química , Proteínas Musculares/metabolismo , Domínios Proteicos/efeitos dos fármacos , Talassemia/metabolismoRESUMO
Virus-like particles (VLPs) induce strong humoral and cellular responses and have formed the basis of some currently licensed vaccines. Here, we present the method used for the production of R21, a VLP-based anti-sporozoite malaria vaccine, under current Clinical Good Manufacturing Practice regulations (cGMP). Previous preclinical studies in BALB/c mice showed that R21 produced almost complete protection against sporozoite challenge with transgenic Plasmodium berghei parasites. Here, we have modified the preclinical production process to enable the production of sufficient quantities of highly pure, clinical-grade material for use in human clinical trials. The R21 construct was re-engineered to include a C-tag to allow affinity-based separation from the major contaminant alcohol oxidase 1 (AOX 1, ~74 kDa). To our knowledge, this is the first use of C-tag technology to purify a VLP vaccine candidate for use in human clinical trials. The R21 vaccine has shown high-level efficacy in an African Phase IIb trial, and multiple clinical trials are underway to assess the safety and efficacy of the vaccine. Our findings support the future use of C-tag platform technologies to enable cGMP-compliant biomanufacturing of high purity yeast-expressed VLP-based vaccines for early phase clinical trials when clinical grade material is required in smaller quantities in a quick time frame.
Assuntos
Vacinas Antimaláricas , Malária , Saccharomycetales , Vacinas de Partículas Semelhantes a Vírus , Vacinas Virais , Animais , Antígenos de Superfície da Hepatite B/genética , Antígenos de Superfície da Hepatite B/metabolismo , Humanos , Malária/prevenção & controle , Vacinas Antimaláricas/genética , Vacinas Antimaláricas/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Pichia/genéticaRESUMO
Plasmodium falciparum malaria continues to evade control efforts, utilizing highly specialized sexual-stages to transmit infection between the human host and mosquito vector. In a vaccination model, antibodies directed to sexual-stage antigens, when ingested in the mosquito blood meal, can inhibit parasite growth in the midgut and consequently arrest transmission. Despite multiple datasets for the Plasmodium sexual-stage transcriptome and proteome, there have been no rational screens to identify candidate antigens for transmission-blocking vaccine (TBV) development. This study characterizes 12 proteins from across the P. falciparum sexual-stages as possible TBV targets. Recombinant proteins are heterologously expressed as full-length ectodomains in a mammalian HEK293 cell system. The proteins recapitulate native parasite epitopes as assessed by indirect fluorescence assay and a proportion exhibits immunoreactivity when tested against sera from individuals living in malaria-endemic Burkina Faso and Mali. Purified IgG generated to the mosquito-stage parasite antigen enolase demonstrates moderate inhibition of parasite development in the mosquito midgut by the ex vivo standard membrane feeding assay. The findings support the use of rational screens and comparative functional assessments in identifying proteins of the P. falciparum transmission pathway and establishing a robust pre-clinical TBV pipeline.
Assuntos
Anticorpos Bloqueadores/imunologia , Malária Falciparum/imunologia , Malária Falciparum/transmissão , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Proteínas Recombinantes/imunologia , Adulto , Animais , Anopheles/parasitologia , Epitopos/imunologia , Feminino , Células HEK293 , Humanos , Imunoglobulina G/imunologia , Vacinas Antimaláricas/imunologia , Malária Falciparum/epidemiologia , Malária Falciparum/virologia , Masculino , Mali/epidemiologia , Camundongos , Camundongos Endogâmicos BALB C , Mosquitos Vetores/parasitologia , Fosfopiruvato Hidratase/imunologia , Proteoma , Proteômica/métodos , VacinaçãoRESUMO
Malaria is caused by Plasmodium parasites, which invade and replicate in erythrocytes. For Plasmodium falciparum, the major cause of severe malaria in humans, a heterotrimeric complex comprised of the secreted parasite proteins, PfCyRPA, PfRIPR and PfRH5 is essential for erythrocyte invasion, mediated by the interaction between PfRH5 and erythrocyte receptor basigin (BSG). However, whilst CyRPA and RIPR are present in most Plasmodium species, RH5 is found only in the small Laverania subgenus. Existence of a complex analogous to PfRH5-PfCyRPA-PfRIPR targeting BSG, and involvement of CyRPA and RIPR in invasion, however, has not been addressed in non-Laverania parasites. Here, we establish that unlike P. falciparum, P. knowlesi and P. vivax do not universally require BSG as a host cell invasion receptor. Although we show that both PkCyRPA and PkRIPR are essential for successful invasion of erythrocytes by P. knowlesi parasites in vitro, neither protein forms a complex with each other or with an RH5-like molecule. Instead, PkRIPR is part of a different trimeric protein complex whereas PkCyRPA appears to function without other parasite binding partners. It therefore appears that in the absence of RH5, outside of the Laverania subgenus, RIPR and CyRPA have different, independent functions crucial for parasite survival.
Assuntos
Basigina/metabolismo , Malária/metabolismo , Complexos Multiproteicos/metabolismo , Plasmodium knowlesi/metabolismo , Proteínas de Protozoários/metabolismo , Basigina/genética , Humanos , Malária/genética , Complexos Multiproteicos/genética , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Plasmodium knowlesi/genética , Plasmodium vivax/genética , Plasmodium vivax/metabolismo , Proteínas de Protozoários/genética , Especificidade da EspécieRESUMO
Matching of symmetry at interfaces is a fundamental obstacle in molecular assembly. Virus-like particles (VLPs) are important vaccine platforms against pathogenic threats, including Covid-19. However, symmetry mismatch can prohibit vaccine nanoassembly. We established an approach for coupling VLPs to diverse antigen symmetries. SpyCatcher003 enabled efficient VLP conjugation and extreme thermal resilience. Many people had pre-existing antibodies to SpyTag:SpyCatcher but less to the 003 variants. We coupled the computer-designed VLP not only to monomers (SARS-CoV-2) but also to cyclic dimers (Newcastle disease, Lyme disease), trimers (influenza hemagglutinins), and tetramers (influenza neuraminidases). Even an antigen with dihedral symmetry could be displayed. For the global challenge of influenza, SpyTag-mediated display of trimer and tetramer antigens strongly induced neutralizing antibodies. SpyCatcher003 conjugation enables nanodisplay of diverse symmetries towards generation of potent vaccines.
Assuntos
Vacinas contra COVID-19/química , Nanoestruturas/química , Vacinas de Partículas Semelhantes a Vírus/química , Anticorpos Neutralizantes/análise , Anticorpos Antivirais , Antígenos Virais/química , Antígenos Virais/imunologia , Congelamento , Humanos , Modelos MolecularesRESUMO
Many human pathogens use host cell-surface receptors to attach and invade cells. Often, the host-pathogen interaction affinity is low, presenting opportunities to block invasion using a soluble, high-affinity mimic of the host protein. The Plasmodium falciparum reticulocyte-binding protein homolog 5 (RH5) provides an exciting candidate for mimicry: it is highly conserved and its moderate affinity binding to the human receptor basigin (KD ≥1 µM) is an essential step in erythrocyte invasion by this malaria parasite. We used deep mutational scanning of a soluble fragment of human basigin to systematically characterize point mutations that enhance basigin affinity for RH5 and then used Rosetta to design a variant within the sequence space of affinity-enhancing mutations. The resulting seven-mutation design exhibited 1900-fold higher affinity (KD approximately 1 nM) for RH5 with a very slow binding off rate (0.23 h-1 ) and reduced the effective Plasmodium growth-inhibitory concentration by at least 10-fold compared to human basigin. The design provides a favorable starting point for engineering on-rate improvements that are likely to be essential to reach therapeutically effective growth inhibition.
Assuntos
Basigina/farmacologia , Proteínas de Transporte/genética , Malária Falciparum/tratamento farmacológico , Eritrócitos/efeitos dos fármacos , Humanos , Malária Falciparum/genética , Malária Falciparum/parasitologia , Modelos Moleculares , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/patogenicidade , Ligação Proteica/efeitos dos fármacos , Proteínas de Protozoários/genéticaRESUMO
Decreased hepcidin mobilizes iron, which facilitates erythropoiesis, but excess iron is pathogenic in ß-thalassemia. Erythropoietin (EPO) enhances erythroferrone (ERFE) synthesis by erythroblasts, and ERFE suppresses hepatic hepcidin production through an unknown mechanism. The BMP/SMAD pathway in the liver is critical for hepcidin control, and we show that EPO suppressed hepcidin and other BMP target genes in vivo in a partially ERFE-dependent manner. Furthermore, recombinant ERFE suppressed the hepatic BMP/SMAD pathway independently of changes in serum and liver iron. In vitro, ERFE decreased SMAD1, SMAD5, and SMAD8 phosphorylation and inhibited expression of BMP target genes. ERFE specifically abrogated the induction of hepcidin by BMP5, BMP6, and BMP7 but had little or no effect on hepcidin induction by BMP2, BMP4, BMP9, or activin B. A neutralizing anti-ERFE antibody prevented ERFE from inhibiting hepcidin induction by BMP5, BMP6, and BMP7. Cell-free homogeneous time-resolved fluorescence assays showed that BMP5, BMP6, and BMP7 competed with anti-ERFE for binding to ERFE. We conclude that ERFE suppresses hepcidin by inhibiting hepatic BMP/SMAD signaling via preferentially impairing an evolutionarily closely related BMP subgroup of BMP5, BMP6, and BMP7. ERFE can act as a natural ligand trap generated by stimulated erythropoiesis to regulate the availability of iron.
Assuntos
Proteína Morfogenética Óssea 6/metabolismo , Citocinas/metabolismo , Hepcidinas/metabolismo , Proteínas Musculares/metabolismo , Animais , Linhagem Celular , Células Hep G2 , Humanos , Ferro/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Transdução de Sinais , Proteínas Smad/metabolismoRESUMO
AIMS: Co-inhibitory receptors play a major role in controlling the Th1 response during blood-stage malaria. Whilst PD-1 is viewed as the dominant co-inhibitory receptor restricting T cell responses, the roles of other such receptors in coordinating Th1 cell activity during malaria are poorly understood. METHODS AND RESULTS: Here, we show that the co-inhibitory receptor Tim-3 is expressed on splenic antigen-specific T-bet+ (Th1) OT-II cells transiently during the early stage of infection with transgenic Plasmodium yoelii NL parasites expressing ovalbumin (P yoelii NL-OVA). We reveal that co-blockade of Tim-3 and PD-L1 during the acute phase of P yoelii NL infection did not improve the Th1 cell response but instead led to a specific reduction in the numbers of splenic Th1 OT-II cells. Combined blockade of Tim-3 and PD-L1 did elevate anti-parasite IgG antibody responses. Nevertheless, co-blockade of Tim-3 and PD-L1 did not affect IFN-γ production by OT-II cells and did not influence parasite control during P yoelii NL-OVA infection. CONCLUSION: Thus, our results show that Tim-3 plays an unexpected combinatorial role with PD-1 in promoting and/ or sustaining a Th1 cell response during the early phase of blood-stage P. yoelii NL infection but combined blockade does not dramatically influence anti-parasite immunity.
Assuntos
Receptor Celular 2 do Vírus da Hepatite A/imunologia , Malária/imunologia , Receptor de Morte Celular Programada 1/imunologia , Células Th1/imunologia , Animais , Antígeno B7-H1 , Linhagem Celular , Epitopos/imunologia , Malária/parasitologia , Masculino , Camundongos Endogâmicos C57BL , Baço/imunologiaRESUMO
Invasion of host erythrocytes is essential to the life cycle of Plasmodium parasites and development of the pathology of malaria. The stages of erythrocyte invasion, including initial contact, apical reorientation, junction formation, and active invagination, are directed by coordinated release of specialized apical organelles and their parasite protein contents. Among these proteins, and central to invasion by all species, are two parasite protein families, the reticulocyte-binding protein homologue (RH) and erythrocyte-binding like proteins, which mediate host-parasite interactions. RH5 from Plasmodium falciparum (PfRH5) is the only member of either family demonstrated to be necessary for erythrocyte invasion in all tested strains, through its interaction with the erythrocyte surface protein basigin (also known as CD147 and EMMPRIN). Antibodies targeting PfRH5 or basigin efficiently block parasite invasion in vitro, making PfRH5 an excellent vaccine candidate. Here we present crystal structures of PfRH5 in complex with basigin and two distinct inhibitory antibodies. PfRH5 adopts a novel fold in which two three-helical bundles come together in a kite-like architecture, presenting binding sites for basigin and inhibitory antibodies at one tip. This provides the first structural insight into erythrocyte binding by the Plasmodium RH protein family and identifies novel inhibitory epitopes to guide design of a new generation of vaccines against the blood-stage parasite.
Assuntos
Anticorpos Bloqueadores/química , Basigina/química , Eritrócitos/química , Malária , Plasmodium falciparum/química , Anticorpos Bloqueadores/imunologia , Antígenos de Protozoários/química , Antígenos de Protozoários/imunologia , Basigina/imunologia , Sítios de Ligação , Cristalografia por Raios X , Epitopos/química , Epitopos/imunologia , Interações Hospedeiro-Parasita/imunologia , Humanos , Malária/parasitologia , Modelos Moleculares , Plasmodium falciparum/imunologia , Proteínas de Protozoários/química , Proteínas de Protozoários/imunologiaRESUMO
Many promising vaccine candidates from pathogenic viruses, bacteria, and parasites are unstable and cannot be produced cheaply for clinical use. For instance, Plasmodium falciparum reticulocyte-binding protein homolog 5 (PfRH5) is essential for erythrocyte invasion, is highly conserved among field isolates, and elicits antibodies that neutralize in vitro and protect in an animal model, making it a leading malaria vaccine candidate. However, functional RH5 is only expressible in eukaryotic systems and exhibits moderate temperature tolerance, limiting its usefulness in hot and low-income countries where malaria prevails. Current approaches to immunogen stabilization involve iterative application of rational or semirational design, random mutagenesis, and biochemical characterization. Typically, each round of optimization yields minor improvement in stability, and multiple rounds are required. In contrast, we developed a one-step design strategy using phylogenetic analysis and Rosetta atomistic calculations to design PfRH5 variants with improved packing and surface polarity. To demonstrate the robustness of this approach, we tested three PfRH5 designs, all of which showed improved stability relative to wild type. The best, bearing 18 mutations relative to PfRH5, expressed in a folded form in bacteria at >1 mg of protein per L of culture, and had 10-15 °C higher thermal tolerance than wild type, while also retaining ligand binding and immunogenic properties indistinguishable from wild type, proving its value as an immunogen for a future generation of vaccines against the malaria blood stage. We envision that this efficient computational stability design methodology will also be used to enhance the biophysical properties of other recalcitrant vaccine candidates from emerging pathogens.