Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Opt Lett ; 49(1): 53-56, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38134150

RESUMO

This manuscript presents a wavelength-division multiplexing (WDM)-based photonic beamformer for an RF phased array antenna transmitter, capable of simultaneously generating multiple beams using the same optical spectrum. In the proposed architecture, for each RF beam, a WDM signal comprising the modulated RF sidebands undergoes complex-valued filtering, while another WDM signal with the same channels, but carrying only optical carriers, goes through an optical frequency-shifting stage. The proposed architecture allows the same WDM channels to be reused for multiple RF beams. The detection of the frequency-shifted optical carrier and the filtered RF sideband of each WDM channel at the photodetector produces a frequency-converted, correctly weighted signal to be fed to each antenna element. The features described herein are analytically derived, numerically simulated, and experimentally demonstrated. Results showcase two independent beams being transmitted in different directions.

2.
Opt Lett ; 48(7): 1962-1965, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37221810

RESUMO

Automotive light detection and ranging (LiDAR) requires accurate and computationally efficient range estimation methods. At present, such efficiency is achieved at the cost of curtailing the dynamic range of a LiDAR receiver. In this Letter, we propose using decision tree ensemble machine learning models to overcome such a trade-off. Simple and yet powerful models are developed and proven capable of performing accurate measurements across a 45-dB dynamic range.

3.
Opt Express ; 26(5): 6158-6171, 2018 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-29529809

RESUMO

The design and dimensioning of a photonic-aided payload for a multi-beam high-throughput communications satellite is a complex problem in which the antenna, RF and photonic subsystems must be considered as a whole for achieving best performance with lowest mass and power consumption. In this paper, we propose and dimension the receiving stage of a communications satellite comprising a phased array antenna (PAA) feeding a multibeam photonic beamforming system (PBS). The PBS uses a single wavelength and resorts to heterodyne detection such that the retrieved beams are frequency downconverted. End-to-end system modeling shows that the complexity of the PAA and PBS can be traded-off for signal-to-noise ratio (SNR) or power consumption without compromising the beam width. The dimensioning of a realistic scenario is presented, showing that an SNR and beam crosstalk on the order of 20 dB are achievable with a total power consumption below 1 kW for a typical number of 100 antenna elements (AEs).

4.
Opt Lett ; 43(11): 2543-2546, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29856425

RESUMO

In this Letter, we propose a monitoring and control system (MCS) for operating tunable optical delay lines (TODLs), regardless of their operation principle and implementation technology. The monitoring system resorts to two out-of-band pilot tones added to the input optical signal. The amplitude and phase difference between tones are retrieved to the control system, which calculates and applies the TODL control signals. The MCS was validated using a Mach-Zehnder delay interferometer-based TODL, implemented in three different silicon photonic integrated circuits (PICs). The three PICs resort to different kinds of phase shifters based on thermo-optic, carrier-injection, and carrier-depletion effects. The proposed MCS enabled tuning the delay within the entire range of the TODL in all tested PICs. The scalability of the MCS for large-scale photonic beamformers is discussed.

5.
Opt Express ; 24(4): 3702-12, 2016 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-26907026

RESUMO

An important challenge for implementing optical signal processing functions such as wavelength conversion or wavelength data exchange (WDE) is to avoid the introduction of linear and nonlinear phase noise in the subsystem. This is particularly important for phase noise sensitive, high-order quadrature-amplitude modulation (QAM) signals. In this paper, we propose and experimentally demonstrate an optical data exchange scheme through cascaded 2nd-order nonlinearities in periodically-poled lithium niobate (PPLN) waveguides using coherent pumping. The proposed coherent pumping scheme enables noise from the coherent pumps to be cancelled out in the swapped data after WDE, even with broad linewidth distributed feedback (DFB) pump lasers. Hence, this scheme allows phase noise tolerant processing functions, enabling the low-cost implementation of WDE for high-order QAM signals. We experimentally demonstrate WDEs between 10-Gbaud 4QAM (4QAM) signal and 12.5-Gbaud 4QAM (16QAM) signal with 3.5-MHz linewidth DFB pump lasers and 50-GHz channel spacing. Error-free operation is observed for the swapped QAM signals with coherent DFB pumping whilst use of free-running DFB pumps leads to visible error floors and unrecoverable phase errors. The phase noise cancellation in the coherent pump scheme is further confirmed by study of the recovered carrier phase of the converted signals. In addition to pump phase noise, the influence of crosstalk caused by the finite extinction ratio in WDE is also experimentally investigated for the swapped QAM signals.

6.
Opt Lett ; 40(2): 288-91, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25679866

RESUMO

In this Letter, we investigate the influence of the phase and power of pump and signal waves on the gain of a four-mode phase-sensitive amplifier (PSA) built with a highly nonlinear fiber (HNLF), using a copier + PSA scheme to generate phase- and frequency-correlated idler waves. Using such an amplifier, low-noise amplification of a 10 Gsymbol/s quadrature phase-shift keying (QPSK) signal, with net gain of ∼20 dB and less than 1 dB optical signal-to-noise ratio (OSNR) penalty at a bit error ratio (BER) of 10(-3), was achieved. We also verified an additional net gain of 11.6 dB when switching from phase-insensitive to phase-sensitive operation, which is in good agreement with theoretical predictions of 12 dB.

7.
Opt Express ; 22(5): 5067-75, 2014 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-24663846

RESUMO

Optical wavelength conversion (OWC) is expected to be a desirable function in future optical transparent networks. Since high-order quadrature amplitude modulation (QAM) is more sensitive to the phase noise, in the OWC of high-order QAM signals, it is crucial to suppress the extra noise introduced in the OWC subsystem, especially for the scenario with multiple cascaded OWCs. Here, we propose and experimentally demonstrate a pump-linewidth-tolerant OWC scheme suitable for high-order QAM signals using coherent two-tone pumps. Using 3.5-MHz-linewidth distributed feedback (DFB) lasers as pump sources, our scheme enables wavelength conversion of both 16QAM and 64QAM signals with negligible power penalty, in a periodically-poled Lithium Niobate (PPLN) waveguide based OWC. We also demonstrate the performance of pump phase noise cancellation, showing that such coherent two-tone pump schemes can eliminate the need for ultra-narrow linewidth pump lasers and enable practical implementation of low-cost OWC in future dynamic optical networks.

8.
Opt Express ; 21(19): 22063-9, 2013 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-24104098

RESUMO

We investigate phase-sensitive amplification (PSA) and phase regeneration of a binary phase-shift keying (BPSK) signal using a single periodically poled lithium niobate (PPLN) waveguide. The PPLN is operated bi-directionally in order to simultaneously achieve phase correlated signals and phase-sensitive (PS) operation. We use injection-locking for carrier phase recovery and a lead zirconate titanate (PZT) fiber stretcher to correct path length deviations in the in-line phase regenerator. We observe a trade-off between high PS gain provided by high pumping power and stability of the device.

9.
Opt Express ; 20(2): 1783-9, 2012 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-22274522

RESUMO

We propose an OTDM to WDM converter which enables wavelength tunability, flexible OTDM tributary to WDM channel mapping and modulation format transparency. The converted signals are obtained by four-wave mixing (FWM) the input 160 Gb/s OTDM signal with a multi-wavelength sampling pulse train (SPT). The generation of the multi-wavelength SPT starts by multicasting an optical clock signal. The multicast pulses are then individually delayed and reshaped by a programmable optical processor (POP), resulting in flexible generation of the SPT. Error-free performance was achieved in different OTDM tributary to WDM channel mappings. In addition, intermediate rate conversion (2x80 Gb/s) was also achieved simply by reconfiguring the POP.


Assuntos
Tecnologia de Fibra Óptica/instrumentação , Tecnologia de Fibra Óptica/métodos , Fibras Ópticas , Processamento de Sinais Assistido por Computador/instrumentação , Desenho de Equipamento , Software
10.
Nat Commun ; 10(1): 1984, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-31040290

RESUMO

Ubiquitous satellite communications are in a leading position for bridging the digital divide. Fulfilling such a mission will require satellite services on par with fibre services, both in bandwidth and cost. Achieving such a performance requires a new generation of communications payloads powered by large-scale processors, enabling a dynamic allocation of hundreds of beams with a total capacity beyond 1 Tbit s-1. The fact that the scale of the processor is proportional to the wavelength of its signals has made photonics a key technology for its implementation. However, one last challenge hinders the introduction of photonics: while large-scale processors demand a modular implementation, coherency among signals must be preserved using simple methods. Here, we demonstrate a coherent photonic-aided receiver meeting such demands. This work shows that a modular and coherent photonic-aided payload is feasible, making way to an extensive introduction of photonics in next generation communications satellites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA