Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 676: 847-858, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39067220

RESUMO

Structure engineering of the Li-rich layered cathodes to overcome insufficient structural stability and the rapid decay of capacity and voltage is crucial for commercializing of the materials for the lithium-ion batteries. Alkali metal element doping at the lithium sites has proven to be a feasible approach to boost the performance of the Li-rich layered oxides. Herein, the Na+-doping strategy in the lithium slabs is introduced to modify the structure of the cobalt-free layered Li-rich oxide, Li1.2Ni0.2Mn0.6O2. It is revealed that the doped Na+ ions can promote the activation of the Li2MnO3 phase, endowing the materials with high initial discharge capacity of 284.2 mAh g-1 at 0.1C. Due to the pillaring effect of the doped Na+ ions in the lithium slabs and the induced formation of oxygen vacancies, the electrochemical stability of the material is significantly improved, providing a capacity retention of 94.0 % after 100 cycles at 0.5C. The voltage decay per cycle is only 2.0 mV, less than 3.2 mV of the Li1.2Ni0.2Mn0.6O2. The results suggest that the facile strategy of introducing Na+ ions into the lithium slabs is an efficient approach for optimizing structure design of the Li-rich layered oxides for the lithium-ion batteries.

2.
J Colloid Interface Sci ; 662: 505-515, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38364475

RESUMO

Lithium nickel oxide (LiNiO2) cathode materials are featured with high capacity and low cost for rechargeable lithium-ion batteries but suffer from severe structure and interface instability. Bulk doping together with surface coating has been proven to be an efficient approach to improve the inner structure and interfacial stability of the LiNiO2 cathode material. Nevertheless, the role of anion doping seems to be quite different from that of cation doping, and a deep insight will be desirable for the structure design of the LiNiO2 cathode material. In this paper, PO43--doped and Li3PO4-coating of dual modification of LiNiO2 are achieved via a facile approach. It is demonstrated that the PO43- anions are doped into the tetrahedron vacant sites of the crystal structure, alleviating the phase transition and improving the reversibility of crystal structure. Besides, the Li3PO4 coating layer ameliorates the interface stability to restrain the side reactions. Therefore, the dual modification enhances overall structural stability of the material to provide excellent performance. Moreover, the consumption of the Li residues by the formation of Li3PO4 coating layer, and the enlarged interlayer spacing of the crystal structure by PO43- doping can facilitate the Li+ ions diffusion, resulting in a superior rate capability.

3.
ScientificWorldJournal ; 2013: 893020, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24089607

RESUMO

This work describes a large reclaimed water source heat pump system (RWSHPS) and elaborates on the composition of the system and its design principles. According to the characteristics of the reclaimed water and taking into account the initial investment, the project is divided into two stages: the first stage adopts distributed heat pump heating system and the second adopts the combination of centralized and decentralized systems. We analyze the heating capacity of the RWSHPS, when the phase II project is completed, the system can provide hydronic heating water with the supply and return water temperature of 55°C/15°C and meet the hydronic heating demand of 8 million square meters of residential buildings. We make a thermal economics analysis by using Thermal Economics theory on RWSHPS and gas boiler system, it is known that the RWSHPS has more advantages, compared with the gas boiler heating system; both its thermal efficiency and economic efficiency are relatively high. It provides a reference for future applications of the RWSHPS.

4.
J Colloid Interface Sci ; 638: 281-290, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36739746

RESUMO

To develop Co-free LiNiO2-based layered cathode materials is crucial for meeting the demands of the lithium-ion batteries with high energy density, long cycling life, and low cost. Herein, the LiNi1-x-yAlxMgyO2 materials are synthesized by the solid-solid interface elemental interdiffusion strategy. It is elucidated that the Mg2+ and Al3+ ions are mainly doped in the Li slabs and transition metal slabs, respectively, leading to the alteration of the crystal lattice. Furthermore, the incorporation of the Mg2+ ions may induce more Ni2+ ions formed in the transition metal slabs, which would have great impact on the electrochemical performance of the materials. The LiNi1-x-yAlxMgyO2 materials with optimized Mg/Al co-doping exhibit much better electrochemical performance than the pristine LiNiO2 and Al-doped LiNiO2 materials, including cycling stability and rate capability. The in-situ XRD characterization and structural analysis show that stabilization of the crystal structure, preservation of the integrity of the secondary particles, and enlargement of the interlayer spacing by the Mg/Al co-doping are the main factors responsible for the superior performance of the materials. The Mg/Al co-doping strategy might be the promising approach for the design of the cobalt-free nickel-rich materials.

5.
J Colloid Interface Sci ; 617: 193-203, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35276520

RESUMO

Stable structure and interface of nickel-rich metal oxides is crucial for practical application of next generation lithium-ion batteries with high energy density. Bulk doping is the promising strategy to improve the structural and interfacial stability of the materials. Herein, we report the impact of vanadium-doping on the structure and electrochemical performance of LiNi0.88Co0.09Al0.03O2 (NCA88). Vanadium doped in high oxidation state (+5) would lead to alteration of the crystal lattice and Li+/Ni2+ cation mixing. Those are the main factors determining the cycling and rate capability of the materials. With optimization of vanadium-doping, the preservation of the integrity of the secondary particles of the materials, the enhancement of the diffusion of Li+ ions, and alleviation of the side reactions of the electrolyte can be efficiently achieved. As a result, NCA88 doped with vanadium of 1.5 mol % can provide superior cycling stability with capacity retention of 84.3% after 250 cycles at 2C, and rate capability with capacity retention of 65.5% at 10C, as compared to the corresponding values of 58.6% and 55% for the pristine counterpart, respectively. The results might be helpful to the selection of dopants in the design of the nickel-rich materials.

6.
Dalton Trans ; 50(46): 17265-17274, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34787163

RESUMO

Electrochemical water splitting is convinced as one of the most promising solutions to combat the energy crisis. The exploitation of efficient hydrogen and oxygen evolution reaction (HER/OER) bifunctional electrocatalysts is undoubtedly a vital spark yet challenging for imperative green sustainable energy. Herein, through introducing a simple pH regulated redox reaction into a tractable hydrothermal procedure, a hierarchical Fe3O4@MnOx binary metal oxide core-shell nano-polyhedron was designed by evolving MnOx wrapped Fe3O4. The MnOx effectively prevents the agglomeration and surface oxidation of Fe3O4 nano-particles and increases the electrochemically active sites. Benefiting from the generous active sites and synergistic effects of Fe3O4 and MnOx, the Fe3O4@MnOx-NF nanocomposite implements efficient HER/OER bifunctional electrocatalytic performance and overall water splitting. As a result, hierarchical Fe3O4@MnOx only requires a low HER/OER overpotential of 242/188 mV to deliver 10 mA cm-2, a small Tafel slope of 116.4/77.6 mV dec-1, combining a long-term cyclability of 5 h. Impressively, by applying Fe3O4@MnOx as an independent cathode and anode, the overall water splitting cell supplies a competitive voltage of 1.64 V to achieve 10 mA cm-2 and super long cyclability of 80 h. These results reveal that this material is a promising candidate for practical water electrolysis application.

7.
ACS Appl Mater Interfaces ; 12(51): 56963-56973, 2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33315372

RESUMO

Destructive effects of surface lithium residues introduced in synthesis and degradation of the microstructure and electrode/electrolyte interface during cycling of Ni-rich cathode materials are the major problems hindering their wide application. Herein, we demonstrate an exquisite surface modification strategy that can utilize lithium residues on the surface of LiNi0.8Co0.15Al0.05O2 to form a uniform coating layer of lithium boron oxide on the surface of the material. The resulting lithium boron oxide layer can not only efficiently serve as a protective layer to alleviate the side reactions at the electrode/electrolyte interface but also tightly interlink the primary grains of the LiNi0.8Co0.15Al0.05O2 material to prevent the material from degradation of the microstructure. As a result, the optimized lithium boron oxide-coated LiNi0.8Co0.15Al0.05O2 material exhibits a high initial discharge capacity of 202.1 mAh g-1 at 0.1 C with a great capacity retention of 93.59% after 100 cycles at 2 C. Thus, the uniform lithium boron oxide coating endows the NCA material with excellent structural stability and long-term cycling capability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA