Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
PLoS Pathog ; 20(2): e1012028, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38416796

RESUMO

Human astrovirus (HAstV) is a known cause of viral gastroenteritis in children worldwide, but HAstV can cause also severe and systemic infections in immunocompromised patients. There are three clades of HAstV: classical, MLB, and VA/HMO. While all three clades are found in gastrointestinal samples, HAstV-VA/HMO is the main clade associated with meningitis and encephalitis in immunocompromised patients. To understand how the HAstV-VA/HMO can infect the central nervous system, we investigated its sequence-divergent capsid spike, which functions in cell attachment and may influence viral tropism. Here we report the high-resolution crystal structures of the HAstV-VA1 capsid spike from strains isolated from patients with gastrointestinal and neuronal disease. The HAstV-VA1 spike forms a dimer and shares a core beta-barrel structure with other astrovirus capsid spikes but is otherwise strikingly different, suggesting that HAstV-VA1 may utilize a different cell receptor, and an infection competition assay supports this hypothesis. Furthermore, by mapping the capsid protease cleavage site onto the structure, the maturation and assembly of the HAstV-VA1 capsid is revealed. Finally, comparison of gastrointestinal and neuronal HAstV-VA1 sequences, structures, and antigenicity suggests that neuronal HAstV-VA1 strains may have acquired immune escape mutations. Overall, our studies on the HAstV-VA1 capsid spike lay a foundation to further investigate the biology of HAstV-VA/HMO and to develop vaccines and therapeutics targeting it.


Assuntos
Infecções por Astroviridae , Mamastrovirus , Criança , Humanos , Capsídeo , Proteínas do Capsídeo/química , Mutação , Filogenia , Fezes
2.
J Virol ; 98(7): e0097124, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38916399

RESUMO

Astroviruses are highly divergent and infect a wide variety of animal hosts. In 2009, a genetically divergent human astrovirus (HAstV) strain VA1 was first identified in an outbreak of acute gastroenteritis. This strain has also been associated with fatal central nervous system disease. In this work, we report the isolation of three high-affinity neutralizing monoclonal antibodies (Nt-MAbs) targeting the capsid spike domain of HAstV-VA1. These antibodies (7C8, 2A2, 3D8) were used to select individual HAstV-VA1 mutants resistant to their neutralizing activity and a HAstV-VA1 triple mutant that escapes neutralization from all three Nt-MAbs. Sequencing of the virus genome capsid region revealed escape mutations that map to the surface of the capsid spike domain, define three potentially independent neutralization epitopes, and help delineate four antigenic sites in human astroviruses. Notably, two of the escape mutations were found to be present in the spike sequence of the HAstV-VA1-PS strain isolated from an immunodeficient patient with encephalitis, suggesting that those mutations arose as a result of the immune pressure generated by the patient's immunotherapy. In agreement with this observation, human serum samples exhibiting strong neutralization activity against wild-type HAstV-VA1 had a 2.6-fold reduction in neutralization titer when evaluated against the triple-escape HAstV-VA1 mutant, suggesting that both mouse and human antibody responses target shared neutralization epitopes. The isolated Nt-MAbs reported in this work will help to characterize the functional domains of the virus during cell entry and have the potential for developing a specific antibody therapy for the neurological disease associated with HAstV-VA1. IMPORTANCE: Human astroviruses (HAstVs) have been historically associated with acute gastroenteritis. However, the genetically divergent HAstV-VA1 strain has been associated with central nervous system disease. In this work high-affinity neutralizing monoclonal antibodies directed to HAstV-VA1 were isolated and characterized. The proposed binding sites for these antibodies and for neutralizing antibodies against classical HAstVs suggest that there are at least four neutralization sites on the capsid spike of astroviruses. Our data show that natural infection with human astrovirus VA1 elicits a robust humoral immune response that targets the same antigenic sites recognized by the mouse monoclonal antibodies and strongly suggests the emergence of a variant HAstV-VA1 virus in an immunodeficient patient with prolonged astrovirus infection. The isolated Nt-MAb reported in this work will help to define the functional sites of the virus involved in cell entry and hold promise for developing a specific antibody therapy for the neurological disease associated with HAstV-VA1.


Assuntos
Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Antivirais , Epitopos , Humanos , Animais , Anticorpos Neutralizantes/imunologia , Camundongos , Epitopos/imunologia , Anticorpos Antivirais/imunologia , Anticorpos Monoclonais/imunologia , Proteínas do Capsídeo/imunologia , Proteínas do Capsídeo/genética , Mamastrovirus/imunologia , Mamastrovirus/genética , Mutação , Infecções por Astroviridae/imunologia , Infecções por Astroviridae/virologia , Testes de Neutralização
3.
Epidemiol Infect ; 152: e30, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38312015

RESUMO

There is limited information on the antibody responses against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in subjects from developing countries with populations having a high incidence of co-morbidities. Here, we analysed the immunogenicity of homologous schemes using the ChAdOx1-S, Sputnik V, or BNT162b2 vaccines and the effect of a booster dose with ChAdOx1-S in middle-aged adults who were seropositive or seronegative to the SARS-CoV-2 spike protein before vaccination. The study was conducted post-vaccination with a follow-up of 4 months for antibody titre using enzyme-linked immunosorbent assay (ELISA) and pseudovirus (PV) neutralization assays (PNAs). All three vaccines elicited a superior IgG anti-receptor-binding domain (RBD) and neutralization response against the Alpha and Delta variants when administered to individuals with a previous infection by SARS-CoV-2. The booster dose spiked the neutralization activity among individuals with and without a prior SARS-CoV-2 infection. The ChAdOx1-S vaccine induced weaker antibody responses in infection-naive subjects. A follow-up of 4 months post-vaccination showed a drop in antibody titre, with about 20% of the infection-naive and 100% of SARS-CoV-2 pre-exposed participants with detectable neutralization capacity against Alpha pseudovirus (Alpha-PV) and Delta PV (Delta-PV). Our observations support the use of different vaccines in a country with high seroprevalence at the vaccination time.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Vacinas , Adulto , Pessoa de Meia-Idade , Humanos , SARS-CoV-2 , México/epidemiologia , Vacina BNT162 , Estudos Soroepidemiológicos , COVID-19/epidemiologia , COVID-19/prevenção & controle , Imunização , Vacinação , Imunidade , Anticorpos Antivirais , Anticorpos Neutralizantes
4.
Sci Rep ; 14(1): 742, 2024 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-38185735

RESUMO

The clinical success of immune checkpoint inhibitors has underscored the key role of the immune system in controlling cancer. Current FDA-approved immune checkpoint inhibitors target the regulatory receptor pathways of cytotoxic T-cells to enhance their anticancer responses. Despite an abundance of evidence that natural killer (NK) cells can also mediate potent anticancer activities, there are no FDA-approved inhibitors targeting NK cell specific checkpoint pathways. Lirilumab, the most clinically advanced NK cell checkpoint inhibitor, targets inhibitory killer immunoglobulin-like receptors (KIRs), however it has yet to conclusively demonstrate clinical efficacy. Here we describe the crystal structure of lirilumab in complex with the inhibitory KIR2DL3, revealing the precise epitope of lirilumab and the molecular mechanisms underlying KIR checkpoint blockade. Notably, the epitope includes several key amino acids that vary across the human population, and binding studies demonstrate the importance of these amino acids for lirilumab binding. These studies reveal how KIR variations in patients could influence the clinical efficacy of lirilumab and reveal general concepts for the development of immune checkpoint inhibitors targeting NK cells.


Assuntos
Aminoácidos , Inibidores de Checkpoint Imunológico , Humanos , Anticorpos Monoclonais , Epitopos
5.
Structure ; 32(8): 1079-1089.e6, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38810648

RESUMO

Influenza causes significant morbidity and mortality. As an alternative approach to current seasonal vaccines, the computationally optimized broadly reactive antigen (COBRA) platform has been previously applied to hemagglutinin (HA). This approach integrates wild-type HA sequences into a single immunogen to expand the breadth of accessible antibody epitopes. Adding to previous studies of H1, H3, and H5 COBRA HAs, we define the structural features of another H1 subtype COBRA, X6, that incorporates HA sequences from before and after the 2009 H1N1 influenza pandemic. We determined structures of this antigen alone and in complex with COBRA-specific as well as broadly reactive and functional antibodies, analyzing its antigenicity. We found that X6 possesses features representing both historic and recent H1 HA strains, enabling binding to both head- and stem-reactive antibodies. Overall, these data confirm the integrity of broadly reactive antibody epitopes of X6 and contribute to design efforts for a next-generation vaccine.


Assuntos
Anticorpos Antivirais , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Humanos , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/química , Modelos Moleculares , Antígenos Virais/imunologia , Antígenos Virais/química , Antígenos Virais/genética , Epitopos/imunologia , Epitopos/química , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/química , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H1N1/química , Influenza Humana/imunologia , Influenza Humana/virologia , Cristalografia por Raios X , Ligação Proteica
6.
bioRxiv ; 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38496431

RESUMO

Astroviruses are highly divergent and infect a wide variety of animal hosts. In 2009, a genetically divergent human astrovirus (HAstV) strain VA1 was first identified in an outbreak of acute gastroenteritis. This strain has also been associated with fatal central nervous system disease. In this work, we report the isolation of three high-affinity neutralizing monoclonal antibodies (Nt-MAbs) targeting the capsid spike domain of HAstV-VA1. These antibodies (7C8, 2A2, 3D8) were used to select individual HAstV-VA1 mutants resistant to their neutralizing activity and also select a HAstV-VA1 triple mutant that escapes neutralization from all three Nt-MAbs. Sequencing of the virus genome capsid region revealed escape mutations that map to the surface of the capsid spike domain, define three potentially independent neutralization epitopes, and help delineate four antigenic sites in rotaviruses. Notably, two of the escape mutations were found to be present in the spike sequence of the HAstV-VA1-PS strain isolated from an immunodeficient patient with encephalitis, suggesting that those mutations arose as a result of the immune pressure generated by the patient's immunotherapy. In accordance with this observation, human serum samples exhibiting strong neutralization activity against wild-type HAstV-VA1 had a 2.6-fold reduction in neutralization titer when evaluated against the triple-escape HAstV-VA1 mutant, indicating shared neutralization epitopes between the mouse and human antibody response. The isolated Nt-MAbs reported in this work will help characterize the functional sites of the virus during cell entry and have the potential for developing a specific antibody therapy for the neurological disease associated with HAstV-VA1. Importance: Human astroviruses (HAstVs) have been historically associated with acute gastroenteritis. However, the genetically divergent HAstV-VA1 strain has been associated with central nervous system disease. This work isolated high-affinity neutralizing monoclonal antibodies directed to HAstV-VA1. The proposed binding sites for these antibodies, together with previously reported sites for neutralizing antibodies against classical HAstVs, suggest the existence of at least four neutralization sites on the capsid spike of astroviruses. Our data show that natural infection with human astrovirus VA1 elicits a robust humoral immune response that targets the same antigenic sites recognized by the mouse monoclonal antibodies and strongly suggests the emergence of a variant HAstV-VA1 virus in an immunodeficient patient with prolonged astrovirus infection. The isolated Nt-MAb reported in this work will be helpful in defining the functional sites of the virus involved in cell entry and hold promise for developing a specific antibody therapy for the neurological disease associated with HAstV-VA1.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA