Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO Rep ; 25(4): 2097-2117, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38532128

RESUMO

High fructose intake during pregnancy increases insulin resistance (IR) and gestational diabetes mellitus (GDM) risk. IR during pregnancy primarily results from elevated hormone levels. We aim to determine the role of liver carbohydrate response element binding protein (ChREBP) in insulin sensitivity and lipid metabolism in pregnant mice and their offspring. Pregnant C57BL/6J wild-type mice and hepatocyte-specific ChREBP-deficient mice were fed with a high-fructose diet (HFrD) or normal chow diet (NC) pre-delivery. We found that the combination of HFrD with pregnancy excessively activates hepatic ChREBP, stimulating progesterone synthesis by increasing MTTP expression, which exacerbates IR. Increased progesterone levels upregulated hepatic ChREBP via the progesterone-PPARγ axis. Placental progesterone activated the progesterone-ChREBP loop in female offspring, contributing to IR and lipid accumulation. In normal dietary conditions, hepatic ChREBP modestly affected progesterone production and influenced IR during pregnancy. Our findings reveal the role of hepatic ChREBP in regulating insulin sensitivity and lipid homeostasis in both pregnant mice consuming an HFrD and female offspring, and suggest it as a potential target for managing gestational metabolic disorders, including GDM.


Assuntos
Resistência à Insulina , Gravidez , Feminino , Camundongos , Animais , Resistência à Insulina/genética , Frutose/efeitos adversos , Frutose/metabolismo , Progesterona/metabolismo , Camundongos Endogâmicos C57BL , Placenta/metabolismo , Fígado/metabolismo , Lipídeos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo
2.
Cell Biol Toxicol ; 40(1): 23, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630355

RESUMO

Cytosolic thiouridylase 2 (CTU2) is an enzyme modifying transfer RNAs post-transcriptionally, which has been implicated in breast cancer and melanoma development. And we found CTU2 participated in hepatocellular carcinoma (HCC) progression here. HepG2 cells as well as xenograft nude mice model were employed to investigate the role of CTU2 in HCC development in vitro and in vivo respectively. Further, we defined CTU2 as a Liver X receptor (LXR) targeted gene, with a typical LXR element in the CTU2 promoter. CTU2 expression was activated by LXR agonist and depressed by LXR knockout. Interestingly, we also found CTU2 took part in lipogenesis by directly enhancing the synthesis of lipogenic proteins, which provided a novel mechanism for LXR regulating lipid synthesis. Meanwhile, lipogenesis was active during cell proliferation, particularly in tumor cells. Reduction of CTU2 expression was related to reduced tumor burden and synergized anti-tumor effect of LXR ligands by inducing tumor cell apoptosis and inhibiting cell proliferation. Taken together, our study identified CTU2 as an LXR target gene. Inhibition of CTU2 expression could enhance the anti-tumor effect of LXR ligand in HCC, identifying CTU2 as a promising target for HCC treatment and providing a novel strategy for the application of LXR agonists in anti-tumor effect.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Receptores X do Fígado , Animais , Feminino , Humanos , Camundongos , Neoplasias da Mama , Carcinoma Hepatocelular/genética , Modelos Animais de Doenças , Neoplasias Hepáticas/genética , Receptores X do Fígado/genética , Camundongos Nus
3.
Cell Biol Toxicol ; 40(1): 10, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319449

RESUMO

Lung cancer is the most common cause of cancer-related deaths worldwide and is caused by multiple factors, including high-fat diet (HFD). CD36, a fatty acid receptor, is closely associated with metabolism-related diseases, including cardiovascular disease and cancer. However, the role of CD36 in HFD-accelerated non-small-cell lung cancer (NSCLC) is unclear. In vivo, we fed C57BL/6J wild-type (WT) and CD36 knockout (CD36-/-) mice normal chow or HFD in the presence or absence of pitavastatin 2 weeks before subcutaneous injection of LLC1 cells. In vitro, A549 and NCI-H520 cells were treated with free fatty acids (FFAs) to mimic HFD situation for exploration the underlying mechanisms. We found that HFD promoted LLC1 tumor growth in vivo and that FFAs increased cell proliferation and migration in A549 and NCI-H520 cells. The enhanced cell or tumor growth was inhibited by the lipid-lowering agent pitavastatin, which reduced lipid accumulation. More importantly, we found that plasma soluble CD36 (sCD36) levels were higher in NSCLC patients than those in healthy ones. Compared to that in WT mice, the proliferation of LLC1 cells in CD36-/- mice was largely suppressed, which was further repressed by pitavastatin in HFD group. At the molecular level, we found that CD36 inhibition, either with pitavastatin or plasmid, reduced proliferation- and migration-related protein expression through the AKT/mTOR pathway. Taken together, we demonstrate that inhibition of CD36 expression by pitavastatin or other inhibitors may be a viable strategy for NSCLC treatment.


Assuntos
Antígenos CD36 , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Humanos , Camundongos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Ácidos Graxos , Neoplasias Pulmonares/tratamento farmacológico , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-akt , Antígenos CD36/genética
4.
Acta Pharmacol Sin ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39060523

RESUMO

Heart failure with preserved ejection fraction (HFpEF) is a complex clinical syndrome with cardiac dysfunction, fluid retention and reduced exercise tolerance as the main manifestations. Current treatment of HFpEF is using combined medications of related comorbidities, there is an urgent need for a modest drug to treat HFpEF. Geniposide (GE), an iridoid glycoside extracted from Gardenia Jasminoides, has shown significant efficacy in the treatment of cardiovascular, digestive and central nervous system disorders. In this study we investigated the therapeutic effects of GE on HFpEF experimental models in vivo and in vitro. HFpEF was induced in mice by feeding with HFD and L-NAME (0.5 g/L) in drinking water for 8 weeks, meanwhile the mice were treated with GE (25, 50 mg/kg) every other day. Cardiac echocardiography and exhaustive exercise were performed, blood pressure was measured at the end of treatment, and heart tissue specimens were collected after the mice were euthanized. We showed that GE administration significantly ameliorated cardiac oxidative stress, inflammation, apoptosis, fibrosis and metabolic disturbances in the hearts of HFpEF mice. We demonstrated that GE promoted the transcriptional activation of Nrf2 by targeting MMP2 to affect upstream SIRT1 and downstream GSK3ß, which in turn alleviated the oxidative stress in the hearts of HFpEF mice. In H9c2 cells and HL-1 cells, we showed that treatment with GE (1 µM) significantly alleviated H2O2-induced oxidative stress through the MMP2/SIRT1/GSK3ß pathway. In summary, GE regulates cardiac oxidative stress via MMP2/SIRT1/GSK3ß pathway and reduces cardiac inflammation, apoptosis, fibrosis and metabolic disorders as well as cardiac dysfunction in HFpEF. GE exerts anti-oxidative stress properties by binding to MMP2, inhibiting ROS generation in HFpEF through the SIRT1/Nrf2 signaling pathway. In addition, GE can also affect the inhibition of the downstream MMP2 target GSK3ß, thereby suppressing the inflammatory and apoptotic responses in HFpEF. Taken together, GE alleviates oxidative stress/apoptosis/fibrosis and metabolic disorders as well as HFpEF through the MMP2/SIRT1/GSK3ß signaling pathway.

5.
J Biol Chem ; 298(2): 101561, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34998825

RESUMO

Obesity is a risk factor for insulin resistance, type 2 diabetes, and cardiovascular diseases. Reticulon-4 (Nogo) is an endoplasmic reticulum-resident protein with unclear functions in obesity. Herein, we investigated the effect of Nogo on obesity and associated metabolic disorders. Human serum samples were collected to explore the relationship between circulating Nogo-B and body mass index value. Nogo-deficient and WT littermate control mice were fed normal chow or high-fat diet (HFD) for 14 weeks, and HFD-induced obese C57BL/6J mice were injected scrambled or Nogo siRNA for 2 weeks. We found that in human and mouse serum, Nogo-B was positively correlated to body mass index/bodyweight and lipid profiles. Reduced Nogo (by genetic deletion or siRNA transfection) protected mice against HFD-induced obesity and related metabolic disorders. We demonstrate that Nogo deficiency reversed HFD-induced whitening of brown adipose tissue, thereby increasing thermogenesis. It also ameliorated lipid accumulation in tissues by activating the adiponectin-adiponectin receptor 1-AMP-activated kinase α signaling axis. Finally, Nogo deficiency potently reduced HFD-induced serum proinflammatory cytokines and infiltration of macrophages into metabolic organs, which is related to enhanced NF-κB p65 degradation via the lysosome pathway. Collectively, our study suggests that reduced levels of Nogo protect mice against HFD-induced obesity by increasing thermogenesis and energy metabolism while inhibiting NF-κB-mediated inflammation. Our results indicate that inhibition of Nogo may be a potential strategy for obesity treatment.


Assuntos
Diabetes Mellitus Tipo 2 , Dieta Hiperlipídica , Resistência à Insulina , Proteínas Nogo , Obesidade , Animais , Diabetes Mellitus Tipo 2/sangue , Dieta Hiperlipídica/efeitos adversos , Resistência à Insulina/fisiologia , Lipídeos/sangue , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , NF-kappa B/sangue , Proteínas Nogo/sangue , Obesidade/sangue , RNA Interferente Pequeno/sangue
6.
Bioorg Chem ; 138: 106654, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37300959

RESUMO

Parkinson's disease (PD) is a progressive neurodegenerative disorder with a complex etiology. Neuroinflammation and oxidative stress are important factors driving the progression of PD. It has been reported that 1,3,4-oxadiazole and flavone derivatives have numerous biological functions, especially in the aspect of anti-inflammatory and antioxidant. Based on the strategy of pharmacodynamic combination, we introduced 1,3,4-oxadiazole moiety into the flavonoid backbone, designed and synthesized a series of novel flavonoid 1,3,4-oxadiazole derivatives. Further, we evaluated their toxicity, anti-inflammatory and antioxidant activities using BV2 microglia. Following a comprehensive analysis, compound F12 showed the best pharmacological activity. In vivo, we induced the classical PD animal model by intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) into C57/BL6J mice. Our results showed that compound F12 ameliorated MPTP-induced dysfunction in mice. Further, compound F12 reduced oxidative stress by promoting the nucleation of nuclear factor erythroid 2-related factor 2 (Nrf2) and decreased the inflammatory response by inhibiting the nuclear translocation of nuclear factor-κB (NF-κB) in vivo and in vitro. Meanwhile, compound F12 inhibited the mitochondrial apoptotic pathway to rescue microglia inflammation-mediated loss of dopaminergic neurons. In conclusion, compound F12 reduced oxidative stress and inflammation and could be as a potential agent for PD treatment.


Assuntos
Fármacos Neuroprotetores , Doença de Parkinson , Camundongos , Animais , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , NF-kappa B/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Antioxidantes/farmacologia , Flavonoides/farmacologia , Flavonoides/uso terapêutico , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Transdução de Sinais , Inflamação/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
7.
Acta Pharmacol Sin ; 44(11): 2216-2229, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37402997

RESUMO

Excessive fructose consumption increases hepatic de novo lipogenesis, resulting in cellular stress, inflammation and liver injury. Nogo-B is a resident protein of the endoplasmic reticulum that regulates its structure and function. Hepatic Nogo-B is a key protein in glycolipid metabolism, and inhibition of Nogo-B has protective effects against metabolic syndrome, thus small molecules that inhibit Nogo-B have therapeutic benefits for glycolipid metabolism disorders. In this study we tested 14 flavones/isoflavones in hepatocytes using dual luciferase reporter system based on the Nogo-B transcriptional response system, and found that 6-methyl flavone (6-MF) exerted the strongest inhibition on Nogo-B expression in hepatocytes with an IC50 value of 15.85 µM. Administration of 6-MF (50 mg· kg-1 ·d-1, i.g. for 3 weeks) significantly improved insulin resistance along with ameliorated liver injury and hypertriglyceridemia in high fructose diet-fed mice. In HepG2 cells cultured in a media containing an FA-fructose mixture, 6-MF (15 µM) significantly inhibited lipid synthesis, oxidative stress and inflammatory responses. Furthermore, we revealed that 6-MF inhibited Nogo-B/ChREBP-mediated fatty acid synthesis and reduced lipid accumulation in hepatocytes by restoring cellular autophagy and promoting fatty acid oxidation via the AMPKα-mTOR pathway. Thus, 6-MF may serve as a potential Nogo-B inhibitor to treat metabolic syndrome caused by glycolipid metabolism dysregulation.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Flavonas , Síndrome Metabólica , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Frutose/efeitos adversos , Frutose/metabolismo , Síndrome Metabólica/metabolismo , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Metabolismo dos Lipídeos , Dieta , Lipogênese , Flavonas/farmacologia , Flavonas/uso terapêutico , Flavonas/metabolismo , Ácidos Graxos/metabolismo , Glicolipídeos , Lipídeos
8.
Acta Pharmacol Sin ; 44(3): 635-646, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35995867

RESUMO

Recent studies show that liver X receptor (LXR) agonists exert significant antitumor effects in a variety of tumor cell lines including hepatocellular carcinoma (HCC). But the molecular mechanisms underlying LXR antitumor activity are not fully understood. In this study we investigated the effect of LXR agonist T0901317 (T317) on HCC development and its relationship with RalA binding protein 1 (RALBP1)-associated EPS domain containing 2 (REPS2)/epidermal growth factor receptor (EGFR) signaling axis. We showed that T317 (0.1-0.5 µM) dose-dependently increased REPS2 expression in normal hepatocytes (BNLCL.2 and LO2) and HCC cells (HepG2 and Huh-7). Using promoter activity assay and chromatin immunoprecipitation (CHIP) assay we demonstrated that T317 enhanced REPS2 expression at the transcriptional level via promoting the binding of LXR protein to the LXR-response element (LXRE) in the REPS2 promoter region. We showed that the inhibitory effect of T317 on the proliferation and migration of HCC cells was closely related to REPS2. Moreover, we revealed that T317 (400 nM) increased expression of REPS2 in HepG2 cells, thus inhibiting epidermal growth factor (EGF)-mediated endocytosis of EGFR as well as the downstream activation of AKT/NF-κB, p38MAPK, and ERK1/2 signaling pathways. Clinical data analysis revealed that REPS2 expression levels were inversely correlated with the development of HCC and reduced REPS2 expression associated with poor prognosis, suggesting that REPS2 might be involved in the development of HCC. In conclusion, this study provides new insights into the potential mechanisms of LXR agonist-inhibited HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Receptores X do Fígado/metabolismo , Neoplasias Hepáticas/patologia , Receptores ErbB/metabolismo , NF-kappa B/metabolismo , Linhagem Celular Tumoral , Proteínas de Ligação ao Cálcio
9.
Acta Pharmacol Sin ; 44(2): 308-320, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35948752

RESUMO

Sensitization of central pain and inflammatory pathways play essential roles in migraine, a primary neurobiological headache disorder. Since hypoxia-inducible factor-1α (HIF-1α) is implicated in neuroprotection and inflammation inhibition, herein we investigated the role of HIF-1α in migraine. A chronic migraine model was established in mice by repeated injection of nitroglycerin (10 mg/kg, i.p.) every other day for 5 total injections. In the prevention and acute experiments, roxadustat, a HIF-1α stabilizer, was orally administered starting before or after nitroglycerin injection, respectively. Pressure application measurement, and tail flick and light-aversive behaviour tests were performed to determine the pressure pain threshold, thermal nociceptive sensitivity and migraine-related light sensitivity. At the end of experiments, mouse serum samples and brain tissues were collected for analyses. We showed that roxadustat administration significantly attenuated nitroglycerin-induced basal hypersensitivity and acute hyperalgesia by improving central sensitization. Roxadustat administration also decreased inflammatory cytokine levels in serum and trigeminal nucleus caudalis (TNC) through NF-κB pathway. Consistent with the in vivo results showing that roxadustat inhibited microglia activation, roxadustat (2, 10, and 20 µM) dose-dependently reduced ROS generation and inflammation in LPS-stimulated BV-2 cells, a mouse microglia cell line, by inhibiting HIF-1α/NF-κB pathway. Taken together, this study demonstrates that roxadustat administration ameliorates migraine-like behaviours and inhibits central pain sensitization in nitroglycerin-injected mice, which is mainly mediated by HIF-1α/NF-κB/inflammation pathway, suggesting the potential of HIF-1α activators as therapeutics for migraine.


Assuntos
Transtornos de Enxaqueca , NF-kappa B , Camundongos , Animais , NF-kappa B/metabolismo , Nitroglicerina/efeitos adversos , Subunidade alfa do Fator 1 Induzível por Hipóxia , Limiar da Dor , Transtornos de Enxaqueca/induzido quimicamente , Transtornos de Enxaqueca/tratamento farmacológico , Transtornos de Enxaqueca/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico
10.
Acta Pharmacol Sin ; 44(8): 1625-1636, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36997664

RESUMO

Vascular calcification is caused by the deposition of calcium salts in the intimal or tunica media layer of the aorta, which increases the risk of cardiovascular events and all-cause mortality. However, the mechanisms underlying vascular calcification are not fully clarified. Recently it has been shown that transcription factor 21 (TCF21) is highly expressed in human and mouse atherosclerotic plaques. In this study we investigated the role of TCF21 in vascular calcification and the underlying mechanisms. In carotid artery atherosclerotic plaques collected from 6 patients, we found that TCF21 expression was upregulated in calcific areas. We further demonstrated TCF21 expression was increased in an in vitro vascular smooth muscle cell (VSMC) osteogenesis model. TCF21 overexpression promoted osteogenic differentiation of VSMC, whereas TCF21 knockdown in VSMC attenuated the calcification. Similar results were observed in ex vivo mouse thoracic aorta rings. Previous reports showed that TCF21 bound to myocardin (MYOCD) to inhibit the transcriptional activity of serum response factor (SRF)-MYOCD complex. We found that SRF overexpression significantly attenuated TCF21-induced VSMC and aortic ring calcification. Overexpression of SRF, but not MYOCD, reversed TCF21-inhibited expression of contractile genes SMA and SM22. More importantly, under high inorganic phosphate (3 mM) condition, SRF overexpression reduced TCF21-induced expression of calcification-related genes (BMP2 and RUNX2) as well as vascular calcification. Moreover, TCF21 overexpression enhanced IL-6 expression and downstream STAT3 activation to facilitate vascular calcification. Both LPS and STAT3 could induce TCF21 expression, suggesting that the inflammation and TCF21 might form a positive feedback loop to amplify the activation of IL-6/STAT3 signaling pathway. On the other hand, TCF21 induced production of inflammatory cytokines IL-1ß and IL-6 in endothelial cells (ECs) to promote VSMC osteogenesis. In EC-specific TCF21 knockout (TCF21ECKO) mice, VD3 and nicotine-induced vascular calcification was significantly reduced. Our results suggest that TCF21 aggravates vascular calcification by activating IL-6/STAT3 signaling and interplay between VSMC and EC, which provides new insights into the pathogenesis of vascular calcification. TCF21 enhances vascular calcification by activating the IL-6-STAT3 signaling pathway. TCF21 inhibition may be a new potential therapeutic strategy for the prevention and treatment of vascular calcification.


Assuntos
Placa Aterosclerótica , Calcificação Vascular , Animais , Humanos , Camundongos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Células Cultivadas , Células Endoteliais/metabolismo , Interleucina-6/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Osteogênese , Placa Aterosclerótica/metabolismo , Transdução de Sinais , Fator de Transcrição STAT3/metabolismo , Calcificação Vascular/genética , Calcificação Vascular/patologia
11.
Acta Pharmacol Sin ; 44(10): 2065-2074, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37225845

RESUMO

Diabetes-related vascular complications include diabetic cardiovascular diseases (CVD), diabetic nephropathy (DN) and diabetic retinopathy, etc. DN can promote the process of end-stage renal disease. On the other hand, atherosclerosis accelerates kidney damage. It is really an urge to explore the mechanisms of diabetes-exacerbated atherosclerosis as well as new agents for treatment of diabetes-exacerbated atherosclerosis and the complications. In this study we investigated the therapeutic effects of fisetin, a natural flavonoid from fruits and vegetables, on kidney injury caused by streptozotocin (STZ)-induced diabetic atherosclerosis in low density lipoprotein receptor deficient (LDLR-/-) mice. Diabetes was induced in LDLR-/- mice by injecting STZ, and the mice were fed high-fat diet (HFD) containing fisetin for 12 weeks. We found that fisetin treatment effectively attenuated diabetes-exacerbated atherosclerosis. Furthermore, we showed that fisetin treatment significantly ameliorated atherosclerosis-enhanced diabetic kidney injury, evidenced by regulating uric acid, urea and creatinine levels in urine and serum, and ameliorating morphological damages and fibrosis in the kidney. In addition, we found that the improvement of glomerular function by fisetin was mediated by reducing the production of reactive oxygen species (ROS), advanced glycosylation end products (AGEs) and inflammatory cytokines. Furthermore, fisetin treatment reduced accumulation of extracellular matrix (ECM) in the kidney by inhibiting the expression of vascular endothelial growth factor A (VEGFA), fibronectin and collagens, while enhancing matrix metalloproteinases 2 (MMP2) and MMP9, which was mainly mediated by inactivating transforming growth factor ß (TGFß)/SMAD family member 2/3 (Smad2/3) pathways. In both in vivo and in vitro experiments, we demonstrated that the therapeutic effects of fisetin on kidney fibrosis resulted from inhibiting CD36 expression. In conclusion, our results suggest that fisetin is a promising natural agent for the treatment of renal injury caused by diabetes and atherosclerosis. We reveal that fisetin is an inhibitor of CD36 for reducing the progression of kidney fibrosis, and fisetin-regulated CD36 may be a therapeutic target for the treatment of renal fibrosis.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Animais , Camundongos , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/metabolismo , Fibrose/tratamento farmacológico , Rim/patologia , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Antígenos CD36/efeitos dos fármacos
12.
J Stroke Cerebrovasc Dis ; 32(12): 107403, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37804782

RESUMO

OBJECTIVES: Protein Z (PZ) /Protein Z-dependent protease inhibitor (ZPI) (PZ/ZPI) system is a new anticoagulant system discovered in recent years, which plays an important role in many diseases. We aimed to compare the plasma PZ/ZPI levels of acute ischemic stroke (AIS) patients and non-stroke control participants and the role of PZ/ZPI in the development of stroke was preliminarily analyzed. MATERIALS AND METHODS: Enzyme linked immunosorbent assay (ELISA) was used to detect and compare plasma PZ levels of 86 patients with acute AIS and 85 non-stroke control patients. Multivariable Logistic regression was used to analyze whether PZ was an independent risk factor for AIS. RESULTS: In the present study, plasma PZ is closely related to inflammatory response, coagulation process and platelet activation, and may participate in the development of AIS by inducing inflammatory responses and interfering with the coagulation process. CONCLUSIONS: Our results suggested that plasma PZ level is one of the independent risk factors of AIS, and plasma ZPI was closely related to coagulation and platelet parameter and may play a role in the coagulation process during AIS.


Assuntos
AVC Isquêmico , Serpinas , Humanos , Inibidores de Proteases/metabolismo , Serpinas/metabolismo , Serpinas/farmacologia , AVC Isquêmico/diagnóstico , Estudos Prospectivos , Proteínas Sanguíneas/metabolismo
13.
J Biol Chem ; 296: 100624, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33812996

RESUMO

The reduction of insulin resistance or improvement of insulin sensitivity is the most effective treatment for type 2 diabetes (T2D). We previously reported that Nogo-B receptor (NGBR), encoded by the NUS1 gene, is required for attenuating hepatic lipogenesis by blocking nuclear translocation of liver X receptor alpha, suggesting its important role in regulating hepatic lipid metabolism. Herein, we demonstrate that NGBR expression was decreased in the liver of obesity-associated T2D patients and db/db mice. NGBR knockout in mouse hepatocytes resulted in increased blood glucose, insulin resistance, and beta-cell loss. High-fat diet (HFD)/streptozotocin (STZ)-treated mice presented the T2D phenotype by showing increased nonesterified fatty acid (NEFA) and triglyceride (TG) in the liver and plasma and increased insulin resistance and beta-cell loss. AAV-mediated NGBR overexpression in the liver reduced NEFA and TG in the liver and circulation and improved liver functions. Consequently, HFD/STZ-treated mice with hepatic NGBR overexpression had increased insulin sensitivity and reduced beta-cell loss. Mechanistically, NGBR overexpression restored insulin signaling of AMPKα1-dependent phosphorylation of AKT and GSK3ß. NGBR overexpression also reduced expression of endoplasmic reticulum stress-associated genes in the liver and skeletal muscle to improve insulin sensitivity. Together, our results reveal that NGBR is required to ameliorate T2D in mice, providing new insight into the role of hepatic NGBR in insulin sensitivity and T2D treatment.


Assuntos
Diabetes Mellitus Experimental/prevenção & controle , Diabetes Mellitus Tipo 2/prevenção & controle , Resistência à Insulina , Secreção de Insulina , Metabolismo dos Lipídeos , Receptores de Superfície Celular/metabolismo , Animais , Diabetes Mellitus Experimental/etiologia , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Receptores de Superfície Celular/genética , Transdução de Sinais
14.
Mol Biol Rep ; 49(7): 5843-5852, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35338439

RESUMO

BACKGROUND: Alcohol is mainly catabolized by class I alcohol dehydrogenase (ADH1) in liver. ADH deficiency can aggravate ethanol-induced tissue injury. Extracellular signal-regulated kinases 1/2 (ERK1/2) is involved in alcohol metabolism. However, the relationship between ERK1/2 and ADH1 remains unclear. METHODS AND RESULTS: To inhibit ERK1/2, HepG2 and BNL cells were treated with mitogen-activated protein kinases 1/2 (MEK1/2) inhibitors (U0126 and PD98059), and C57BL/6J mice were fed U0126. After treatment, the protein and mRNA expression of ADH1 were determined by Western blot and quantitative real time-PCR. The activity of ADH1 promoter was detected using luciferase assay. The results showed MEK1/2 inhibitors significantly increased ADH1 protein expression by inducing its transcription activity. Then we demonstrated a farnesoid X receptor (FXR) response element (FXRE) in ADH1 promoter by ChIP assay. To test whether FXR mediates the induction of MEK1/2 inhibitors on ADH1, HepG2 cells were transfected with FXR siRNA or ADH1 promoters with FXRE mutation. We found both FXR siRNA and FXRE mutation in ADH1 promoter abolished MEK1/2 inhibitors-induced ADH1 expression, indicating the activation of MEK1/2 inhibitors on ADH1 depends on FXR. CONCLUSIONS: Our findings revealed inhibition of ERK1/2 can significantly increase ADH1 expression, indicating MEK1/2 inhibitors may possess potential application in alcohol-related diseases.


Assuntos
Álcool Desidrogenase , Hepatócitos , Inibidores de Proteínas Quinases/farmacologia , Álcool Desidrogenase/genética , Animais , Hepatócitos/fisiologia , Fígado , MAP Quinase Quinase 1/antagonistas & inibidores , MAP Quinase Quinase 2/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos C57BL , RNA Interferente Pequeno
15.
Bioorg Chem ; 129: 106206, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36288667

RESUMO

Heart failure is one of the diseases with the highest mortality in the world, and inflammation is the main cause for its occurrence and development. The stilbene skeleton of resveratrol has been shown to have excellent anti-inflammatory and antioxidant activities. In order to continue our research on dihydropyrazole derivatives, a series of novel (E)-4-methyl-2-(3-phenyl-5-(4-styrylphenyl)-4,5-dihydro-1H-pyrazol-1-yl)thiazole derivatives were designed and synthesized according to the principle of molecular hybridization for evaluation their anti-inflammatory and antioxidation activities. We screened their anti-inflammatory abilities in RAW264.7 cells and analyzed the preliminary structure-activity relationship, and explored the related molecular mechanisms. We further used doxorubicin (DOX)-induced heart failure model to explore the protective role of our compound in vivo. Our results showed that compound F5 exhibited the most potent activity and was superior to the positive control. It reversed the expression of lipopolysaccharide (LPS)-regulated inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and superoxide dismutase 1 (SOD1) in RAW264.7 cells. In addition, compound F5 also inhibited DOX-induced inflammation and reactive oxygen species by modulating the p38/nuclear factor kappa B (NF-κB) signaling pathway in H9C2 cells. In vivo results showed that compound F5 ameliorated DOX-caused damage, such as reduced left ventricular ejection fraction, severe inflammation, fibrosis and oxidative stress in heart. In conclusion, compound F5 could be used as a promising agent for the treatment of heart failure through attenuating oxidative stress and inflammation.


Assuntos
Insuficiência Cardíaca , Estilbenos , Camundongos , Animais , NF-kappa B/metabolismo , Estilbenos/farmacologia , Estilbenos/uso terapêutico , Volume Sistólico , Óxido Nítrico/metabolismo , Função Ventricular Esquerda , Óxido Nítrico Sintase Tipo II/metabolismo , Transdução de Sinais , Anti-Inflamatórios/efeitos adversos , Lipopolissacarídeos/efeitos adversos , Inflamação/tratamento farmacológico , Inflamação/induzido quimicamente , Fator de Necrose Tumoral alfa/metabolismo , Células RAW 264.7 , Ciclo-Oxigenase 2/metabolismo , Doxorrubicina/farmacologia , Insuficiência Cardíaca/induzido quimicamente , Insuficiência Cardíaca/tratamento farmacológico
16.
J Biol Chem ; 295(47): 15870-15882, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-32913121

RESUMO

Ascorbic acid, a water-soluble antioxidant, regulates various biological processes and is thought to influence cholesterol. However, little is known about the mechanisms underpinning ascorbic acid-mediated cholesterol metabolism. Here, we determined if ascorbic acid can regulate expression of proprotein convertase subtilisin/kexin 9 (PCSK9), which binds low-density lipoprotein receptor (LDLR) leading to its intracellular degradation, to influence low-density lipoprotein (LDL) metabolism. At cellular levels, ascorbic acid inhibited PCSK9 expression in HepG2 and Huh7 cell lines. Consequently, LDLR expression and cellular LDL uptake were enhanced. Similar effects of ascorbic acid on PCSK9 and LDLR expression were observed in mouse primary hepatocytes. Mechanistically, ascorbic acid suppressed PCSK9 expression in a forkhead box O3-dependent manner. In addition, ascorbic acid increased LDLR transcription by regulating sterol regulatory element-binding protein 2. In vivo, administration of ascorbic acid reduced serum PCSK9 levels and enhanced liver LDLR expression in C57BL/6J mice. Reciprocally, lack of ascorbic acid supplementation in L-gulono-γ-lactone oxidase deficient (Gulo-/-) mice increased circulating PCSK9 and LDL levels, and decreased liver LDLR expression, whereas ascorbic acid supplementation decreased PCSK9 and increased LDLR expression, ameliorating LDL levels in Gulo-/- mice fed a high fat diet. Moreover, ascorbic acid levels were negatively correlated to PCSK9, total and LDL levels in human serum samples. Taken together, these findings suggest that ascorbic acid reduces PCSK9 expression, leading to increased LDLR expression and cellular LDL uptake. Thus, supplementation of ascorbic acid may ameliorate lipid profiles in ascorbic acid-deficient species.


Assuntos
Ácido Ascórbico/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Pró-Proteína Convertase 9/biossíntese , Receptores de LDL/biossíntese , Animais , Células Hep G2 , Humanos , L-Gulonolactona Oxidase/genética , L-Gulonolactona Oxidase/metabolismo , Lipoproteínas LDL/genética , Lipoproteínas LDL/metabolismo , Camundongos , Camundongos Knockout , Pró-Proteína Convertase 9/genética , Receptores de LDL/genética
17.
J Biol Chem ; 295(48): 16314-16327, 2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-32963108

RESUMO

TNF ligand-related molecule 1A (TL1A) is a vascular endothelial growth inhibitor to reduce neovascularization. Lack of apoE a expression results in hypercholesterolemia and atherosclerosis. In this study, we determined the precise effects of TL1A on the development of atherosclerosis and the underlying mechanisms in apoE-deficient mice. After 12 weeks of pro-atherogenic high-fat diet feeding and TL1A treatment, mouse aorta, serum, and liver samples were collected and used to assess atherosclerotic lesions, fatty liver, and expression of related molecules. We found that TL1A treatment significantly reduced lesions and enhanced plaque stability. Mechanistically, TL1A inhibited formation of foam cells derived from vascular smooth muscle cells (VSMCs) but not macrophages by activating expression of ABC transporter A1 (ABCA1), ABCG1, and cholesterol efflux in a liver X receptor-dependent manner. TL1A reduced the transformation of VSMCs from contractile phenotype into synthetic phenotypes by activating expression of contractile marker α smooth muscle actin and inhibiting expression of synthetic marker osteopontin, or osteoblast-like phenotype by reducing calcification. In addition, TL1A ameliorated high-fat diet-induced lipid metabolic disorders in the liver. Taken together, our work shows that TL1A can inhibit the development of atherosclerosis by regulating VSMC/foam cell formation and switch of VSMC phenotypes and suggests further investigation of its potential for atherosclerosis treatment.


Assuntos
Aterosclerose , Dieta Hiperlipídica/efeitos adversos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/farmacologia , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Actinas/genética , Actinas/metabolismo , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Aterosclerose/induzido quimicamente , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/prevenção & controle , Células Espumosas/metabolismo , Masculino , Camundongos , Camundongos Knockout para ApoE , Osteopontina/genética , Osteopontina/metabolismo
18.
Bioorg Med Chem Lett ; 43: 128051, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33887441

RESUMO

Successes have been achieved in developing human monoamine oxidase B (hMAO-B) inhibitors as anti-Parkinson's disease (PD) drugs. However, low efficiency and unwanted side effects of the marketed hMAO-B inhibitors hamper their medical applications, therefore, novel potent selective hMAO-B inhibitors are still of great interest. Herein we report 1-(prop-2-yn-1-ylamino)-2,3-dihydro-1H-indene-4-thiol derivatives as hMAO-B inhibitors, which were designed by employing a fragment-based drug design strategy to link rasagiline to hydrophobic fragments. Among the synthesized 31 compounds, K8 and K24 demonstrated very encouraging hMAO-B inhibitory activities and selectivity over hMAO-A, better than rasagiline and safinamide. In vitro studies indicated that K8 and K24 are nontoxic to nervous tissue cells and they have considerable effects against ROS formation and potential neuroprotective activity. Further mice behavioral tests demonstrated these two compounds have good therapeutic effects on MPTP-induced PD model mice. All these experiment results suggest that compounds K8 and K24 can be promising candidates for further research for treatment of PD.


Assuntos
Desenho de Fármacos , Indenos/farmacologia , Inibidores da Monoaminoxidase/farmacologia , Monoaminoxidase/metabolismo , Compostos de Sulfidrila/farmacologia , Relação Dose-Resposta a Droga , Humanos , Indenos/síntese química , Indenos/química , Modelos Moleculares , Estrutura Molecular , Inibidores da Monoaminoxidase/síntese química , Inibidores da Monoaminoxidase/química , Relação Estrutura-Atividade , Compostos de Sulfidrila/síntese química , Compostos de Sulfidrila/química
19.
J Hepatol ; 73(6): 1482-1495, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32738448

RESUMO

BACKGROUND & AIMS: Chronic overconsumption of a high-carbohydrate diet leads to steatosis and its associated metabolic disorder and, eventually, to non-alcoholic fatty liver disease. Carbohydrate-responsive element binding protein (ChREBP) and insulin regulate de novo lipogenesis from glucose. Herein, we studied the effect of reticulon-4 (Nogo) expression on diet-induced metabolic disorders in mice. METHODS: Nogo-deficient (Nogo-/-) and littermate control [wild-type (WT)] mice were fed a high-glucose or high-fructose diet (HGD/HFrD) to induce metabolic disorders. The effects of Nogo small interfering (si) RNA (siRNA) on HFrD-induced metabolic disorders were investigated in C57BL/6J mice. RESULTS: HGD/HFrD induced steatosis and its associated metabolic disorders in WT mice by activating ChREBP and impairing insulin sensitivity. They also activated Nogo-B expression, which in turn inhibited insulin activity. In response to HGD/HFrD feeding, Nogo deficiency enhanced insulin sensitivity and energy metabolism to reduce the expression of ChREBP and lipogenic molecules, activated AMP-activated catalytic subunit α, peroxisome proliferator activated receptor α and fibroblast growth factor 21, and reduced endoplasmic reticulum (ER) stress and inflammation, thereby blocking HGD/HFrD-induced hepatic lipid accumulation, insulin resistance and other metabolic disorders. Injection of Nogo siRNA protected C57BL/6J mice against HFrD-induced metabolic disorders by ameliorating insulin sensitivity, ChREBP activity, ER stress and inflammation. CONCLUSIONS: Our study identified Nogo as an important mediator of insulin sensitivity and ChREBP activity. Reduction of Nogo expression is a potential strategy for the treatment of high-carbohydrate diet-induced metabolic complications. LAY SUMMARY: Nogo deficiency blocks high-carbohydrate diet-induced glucose intolerance and insulin resistance, while increasing glucose/lipid utilisation and energy expenditure. Thus, reduction of Nogo expression protects against high-carbohydrate diet-induced body-weight gain, hepatic lipid accumulation and the associated metabolic disorders, indicating that approaches inhibiting Nogo expression can be applied for the treatment of diseases associated with metabolic disorders.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Carboidratos da Dieta/metabolismo , Intolerância à Glucose/metabolismo , Proteínas Nogo/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Animais , Descoberta de Drogas , Metabolismo Energético , Insulina/metabolismo , Resistência à Insulina , Lipogênese/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Nogo/deficiência , RNA Interferente Pequeno/metabolismo
20.
Biochem Biophys Res Commun ; 522(2): 512-517, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31784089

RESUMO

Combined LXR ligand (T0901317) and MEK1/2 inhibitor (U0126) not only reduces atherosclerosis in apoE deficient mice, but also blocks LXR ligand-induced fatty liver and hypertriglyceridemia. However, the atheroprotective function of combined T0901317 and U0126 should be further investigated in LDLR deficient (LDLR-/-) mice since deficiency of LDLR not apoE can occur to humans with a high frequency. Herein, we validated the effectiveness of this combinational therapy on the development of atherosclerosis in LDLR-/- mice to demonstrate its potential application in clinic. We found although T0901317 or U0126 alone reduced atherosclerotic plaques in en face and aortic root areas in HFD-fed LDLR-/- mice, their combination inhibited lesions in a synergistic manner. Combined U0126 and T0901317 had no effect on serum total cholesterol levels. T0901317 deceased HDL-cholesterol levels, which was restored by combined U0126. Meanwhile, U0126 alleviated T0901317-induced triglyceride accumulation, the major adverse effect of T0901317 which limits its clinical utility. Mechanistically, U0126 reduced fatty acid de novo synthesis by inhibiting hepatic fatty acid synthase (FASN) expression, thereby correcting T0901317-induced triglyceride overproduction. In conclusion, our study demonstrates that combination of MEK1/2 inhibitor and LXR ligand can synergistically reduce atherosclerosis in LDLR deficient mice without lipogenic side effects.


Assuntos
Aterosclerose/tratamento farmacológico , Receptores X do Fígado/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Inibidores de Proteínas Quinases/uso terapêutico , Receptores de LDL/deficiência , Animais , Aterosclerose/sangue , Aterosclerose/complicações , Butadienos/farmacologia , Butadienos/uso terapêutico , Sinergismo Farmacológico , Fígado Gorduroso/sangue , Fígado Gorduroso/complicações , Fígado Gorduroso/tratamento farmacológico , Feminino , Hipertrigliceridemia/sangue , Hipertrigliceridemia/complicações , Ligantes , Lipídeos/sangue , Masculino , Camundongos Knockout , Nitrilas/farmacologia , Nitrilas/uso terapêutico , Placa Aterosclerótica/sangue , Placa Aterosclerótica/complicações , Placa Aterosclerótica/tratamento farmacológico , Placa Aterosclerótica/patologia , Receptores de LDL/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA