Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1206357, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37771485

RESUMO

Among seed attributes, weight is one of the main factors determining the soybean harvest index. Recently, the focus of soybean breeding has shifted to improving seed size and weight for crop optimization in terms of seed and oil yield. With recent technological advancements, there is an increasing application of imaging sensors that provide simple, real-time, non-destructive, and inexpensive image data for rapid image-based prediction of seed traits in plant breeding programs. The present work is related to digital image analysis of seed traits for the prediction of hundred-seed weight (HSW) in soybean. The image-based seed architectural traits (i-traits) measured were area size (AS), perimeter length (PL), length (L), width (W), length-to-width ratio (LWR), intersection of length and width (IS), seed circularity (CS), and distance between IS and CG (DS). The phenotypic investigation revealed significant genetic variability among 164 soybean genotypes for both i-traits and manually measured seed weight. Seven popular machine learning (ML) algorithms, namely Simple Linear Regression (SLR), Multiple Linear Regression (MLR), Random Forest (RF), Support Vector Regression (SVR), LASSO Regression (LR), Ridge Regression (RR), and Elastic Net Regression (EN), were used to create models that can predict the weight of soybean seeds based on the image-based novel features derived from the Red-Green-Blue (RGB)/visual image. Among the models, random forest and multiple linear regression models that use multiple explanatory variables related to seed size traits (AS, L, W, and DS) were identified as the best models for predicting seed weight with the highest prediction accuracy (coefficient of determination, R2=0.98 and 0.94, respectively) and the lowest prediction error, i.e., root mean square error (RMSE) and mean absolute error (MAE). Finally, principal components analysis (PCA) and a hierarchical clustering approach were used to identify IC538070 as a superior genotype with a larger seed size and weight. The identified donors/traits can potentially be used in soybean improvement programs.

2.
Front Plant Sci ; 14: 1214801, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37448870

RESUMO

Introduction: Phenomics has emerged as important tool to bridge the genotype-phenotype gap. To dissect complex traits such as highly dynamic plant growth, and quantification of its component traits over a different growth phase of plant will immensely help dissect genetic basis of biomass production. Based on RGB images, models have been developed to predict biomass recently. However, it is very challenging to find a model performing stable across experiments. In this study, we recorded RGB and NIR images of wheat germplasm and Recombinant Inbred Lines (RILs) of Raj3765xHD2329, and examined the use of multimodal images from RGB, NIR sensors and machine learning models to predict biomass and leaf area non-invasively. Results: The image-based traits (i-Traits) containing geometric features, RGB based indices, RGB colour classes and NIR features were categorized into architectural traits and physiological traits. Total 77 i-Traits were selected for prediction of biomass and leaf area consisting of 35 architectural and 42 physiological traits. We have shown that different biomass related traits such as fresh weight, dry weight and shoot area can be predicted accurately from RGB and NIR images using 16 machine learning models. We applied the models on two consecutive years of experiments and found that measurement accuracies were similar suggesting the generalized nature of models. Results showed that all biomass-related traits could be estimated with about 90% accuracy but the performance of model BLASSO was relatively stable and high in all the traits and experiments. The R2 of BLASSO for fresh weight prediction was 0.96 (both year experiments), for dry weight prediction was 0.90 (Experiment 1) and 0.93 (Experiment 2) and for shoot area prediction 0.96 (Experiment 1) and 0.93 (Experiment 2). Also, the RMSRE of BLASSO for fresh weight prediction was 0.53 (Experiment 1) and 0.24 (Experiment 2), for dry weight prediction was 0.85 (Experiment 1) and 0.25 (Experiment 2) and for shoot area prediction 0.59 (Experiment 1) and 0.53 (Experiment 2). Discussion: Based on the quantification power analysis of i-Traits, the determinants of biomass accumulation were found which contains both architectural and physiological traits. The best predictor i-Trait for fresh weight and dry weight prediction was Area_SV and for shoot area prediction was projected shoot area. These results will be helpful for identification and genetic basis dissection of major determinants of biomass accumulation and also non-invasive high throughput estimation of plant growth during different phenological stages can identify hitherto uncovered genes for biomass production and its deployment in crop improvement for breaking the yield plateau.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA