Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Philos Trans A Math Phys Eng Sci ; 379(2206): 20200345, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34334027

RESUMO

Trees belong to the largest living organisms on Earth and plants in general are one of our main renewable resources. Wood as a material has been used since the beginning of humankind. Today, forestry still provides raw materials for a variety of applications, for example in the building industry, in paper manufacturing and for various wood products. However, many parts of the tree, such as reaction wood, branches and bark are often discarded as forestry residues and waste wood, used as additives in composite materials or burned for energy production. More advanced uses of bark include the extraction of chemical substances for glues, food additives or healthcare, as well as the transformation to advanced carbon materials. Here, we argue that a proper understanding of the internal fibrous structure and the resulting mechanical behaviour of these forest residues allows for the design of materials with greatly varying properties and applications. We show that simple and cheap treatments can give tree bark a leather-like appearance that can be used for the construction of shelters and even the fabrication of woven textiles. This article is part of the theme issue 'Bio-derived and bioinspired sustainable advanced materials for emerging technologies (part 1)'.


Assuntos
Casca de Planta , Madeira , Carbono
2.
Macromol Rapid Commun ; 40(7): e1800896, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30811751

RESUMO

Inspired by the motions of plant tissues in response to external stimuli, significant attention has been devoted to the development of actuating polymeric materials. In particular, polymeric actuators driven by organic molecules have been designed due to their combined superiorities of tunable functional monomers, designable chemical structures, and variable structural anisotropy. Here, the recent progress is summarized in terms of material synthesis, structure design, polymer-solvent interaction, and actuating performance. In addition, various possibilities for practical applications, including the ability to sense chemical vapors and solvent isomers, and future directions to satisfy the requirement of sensing and smart systems are also highlighted.


Assuntos
Compostos Orgânicos/química , Polímeros/síntese química , Estrutura Molecular , Polímeros/química
3.
Ann Bot ; 121(2): 345-358, 2018 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-29293865

RESUMO

Background and Aims: A key structural adaptation of vascular plants was the evolution of specialized vascular and mechanical tissues, innovations likely to have generated novel cell wall architectures. While collenchyma is a strengthening tissue typically found in growing organs of angiosperms, a similar tissue occurs in the petiole of the fern Asplenium rutifolium. Methods: The in situ cell wall (ultra)structure and composition of this tissue was investigated and characterized mechanically as well as structurally through nano-indentation and wide-angle X-ray diffraction, respectively. Key Results: Structurally the mechanical tissue resembles sclerenchyma, while its biomechanical properties and molecular composition both share more characteristics with angiosperm collenchyma. Cell wall thickening only occurs late during cell expansion or after cell expansion has ceased. Conclusions: If the term collenchyma is reserved for walls that thicken during expansive growth, the mechanical tissue in A. rutifolium represents sclerenchyma that mimics the properties of collenchyma and has the ability to modify its mechanical properties through sclerification. These results support the view that collenchyma does not occur in ferns and most probably evolved in angiosperms.


Assuntos
Parede Celular/fisiologia , Gleiquênias/citologia , Fenômenos Biomecânicos , Parede Celular/química , Parede Celular/ultraestrutura , Gleiquênias/fisiologia , Gleiquênias/ultraestrutura , Mananas/análise , Microscopia Eletrônica de Transmissão , Difração de Raios X
4.
J Exp Biol ; 218(Pt 6): 824-36, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25617457

RESUMO

Perhaps the most striking feature of billfishes is the extreme elongation of the premaxillary bones forming their rostra. Surprisingly, the exact role of this structure in feeding is still controversial. The goal of this study is to investigate the use of the rostrum from a functional, biomechanical and morphological standpoint to ultimately infer its possible role during feeding. Using beam theory, experimental and theoretical loading tests were performed on the rostra from two morphologically different billfish, the blue marlin (Makaira nigricans) and the swordfish (Xiphias gladius). Two loading regimes were applied (dorsoventral and lateral) to simulate possible striking behaviors. Histological samples and material properties of the rostra were obtained along their lengths to further characterize structure and mechanical performance. Intraspecific results show similar stress distributions for most regions of the rostra, suggesting that this structure may be designed to withstand continuous loadings with no particular region of stress concentration. Although material stiffness increased distally, flexural stiffness increased proximally owing to higher second moment of area. The blue marlin rostrum was stiffer and resisted considerably higher loads for both loading planes compared with that of the swordfish. However, when a continuous load along the rostrum was considered, simulating the rostrum swinging through the water, swordfish exhibited lower stress and drag during lateral loading. Our combined results suggest that the swordfish rostrum is suited for lateral swiping to incapacitate their prey, whereas the blue marlin rostrum is better suited to strike prey from a wider variety of directions.


Assuntos
Perciformes/anatomia & histologia , Perciformes/fisiologia , Comportamento Predatório , Crânio/anatomia & histologia , Animais , Fenômenos Biomecânicos , Teste de Materiais , Modelos Biológicos , Especificidade da Espécie
5.
PNAS Nexus ; 3(4): pgae121, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38590971

RESUMO

Little is known about the contribution of 3D surface geometry to the development of multilayered tissues containing fibrous extracellular matrix components, such as those found in bone. In this study, we elucidate the role of curvature in the formation of chiral, twisted-plywood-like structures. Tissues consisting of murine preosteoblast cells (MC3T3-E1) were grown on 3D scaffolds with constant-mean curvature and negative Gaussian curvature for up to 32 days. Using 3D fluorescence microscopy, the influence of surface curvature on actin stress-fiber alignment and chirality was investigated. To gain mechanistic insights, we did experiments with MC3T3-E1 cells deficient in nuclear A-type lamins or treated with drugs targeting cytoskeleton proteins. We find that wild-type cells form a thick tissue with fibers predominantly aligned along directions of negative curvature, but exhibiting a twist in orientation with respect to older tissues. Fiber orientation is conserved below the tissue surface, thus creating a twisted-plywood-like material. We further show that this alignment pattern strongly depends on the structural components of the cells (A-type lamins, actin, and myosin), showing a role of mechanosensing on tissue organization. Our data indicate the importance of substrate curvature in the formation of 3D tissues and provide insights into the emergence of chirality.

6.
PNAS Nexus ; 2(1): pgac292, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36712928

RESUMO

Growing tissues are highly dynamic, and flow on sufficiently long timescales due to cell proliferation, migration, and tissue remodeling. As a consequence, growing tissues can often be approximated as viscous fluids. This means that the shape of microtissues growing in vitro is governed by their surface stress state, as in fluid droplets. Recent work showed that cells in the near-surface region of fibroblastic or osteoblastic microtissues contract with highly oriented actin filaments, thus making the surface properties highly anisotropic, in contrast to what is expected for an isotropic fluid. Here, we develop a model that includes mechanical anisotropy of the surface generated by contractile fibers and we show that mechanical equilibrium requires contractile filaments to follow geodesic lines on the surface. Constant pressure in the fluid forces these contractile filaments to be along geodesics with a constant normal curvature. We then take this into account to determine equilibrium shapes of rotationally symmetric bodies subjected to anisotropic surface stress states and derive a family of surfaces of revolution. A comparison with recently published shapes of microtissues shows that this theory accurately predicts both the surface shape and the direction of the actin filaments on the surface.

7.
Adv Mater ; 35(13): e2206110, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36461812

RESUMO

Surface curvature both emerges from, and influences the behavior of, living objects at length scales ranging from cell membranes to single cells to tissues and organs. The relevance of surface curvature in biology is supported by numerous experimental and theoretical investigations in recent years. In this review, first, a brief introduction to the key ideas of surface curvature in the context of biological systems is given and the challenges that arise when measuring surface curvature are discussed. Giving an overview of the emergence of curvature in biological systems, its significance at different length scales becomes apparent. On the other hand, summarizing current findings also shows that both single cells and entire cell sheets, tissues or organisms respond to curvature by modulating their shape and their migration behavior. Finally, the interplay between the distribution of morphogens or micro-organisms and the emergence of curvature across length scales is addressed with examples demonstrating these key mechanistic principles of morphogenesis. Overall, this review highlights that curved interfaces are not merely a passive by-product of the chemical, biological, and mechanical processes but that curvature acts also as a signal that co-determines these processes.


Assuntos
Fenômenos Mecânicos , Membrana Celular , Morfogênese
8.
Materials (Basel) ; 15(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36295440

RESUMO

When designing scaffolds for bone tissue engineering (BTE), the wall shear stress (WSS), due to the fluid flow inside the scaffold, is an important factor to consider as it influences the cellular process involved in new tissue formation. The present work analyzed the average WSS in Schwartz diamond (SD) and gyroid (SG) scaffolds with different surface topologies and mesh elements using computational fluid dynamics (CFD) analysis. It was found that scaffold meshes with a smooth surface topology with tetrahedral elements had WSS levels 35% higher than the equivalent scaffold with a non-smooth surface topology with hexahedral elements. The present work also investigated the possibility of implementing the optimization algorithm simulated annealing to aid in the design of BTE scaffolds with a specific average WSS, with the outputs showing that the algorithm was able to reach WSS levels in the vicinity of 5 mPa (physiological range) within the established limit of 100 iterations. This proved the efficacy of combining CFD and optimization methods in the design of BTE scaffolds.

9.
Proc Math Phys Eng Sci ; 478(2257): 20210607, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35153613

RESUMO

Bone injuries or defects that require invasive surgical treatment are a serious clinical issue, particularly when it comes to treatment success and effectiveness. Accordingly, bone tissue engineering (BTE) has been researching the use of computational fluid dynamics (CFD) analysis tools to assist in designing optimal scaffolds that better promote bone growth and repair. This paper aims to offer a comprehensive review of recent studies that use CFD analysis in BTE. The mechanical and fluidic properties of a given scaffold are coupled to each other via the scaffold architecture, meaning an optimization of one may negatively affect the other. For example, designs that improve scaffold permeability normally result in a decreased average wall shear stress. Linked with these findings, it appears there are very few studies in this area that state a specific application for their scaffolds and those that do are focused on in vitro bioreactor environments. Finally, this review also demonstrates a scarcity of studies that combine CFD with optimization methods to improve scaffold design. This highlights an important direction of research for the development of the next generation of BTE scaffolds.

11.
Biomacromolecules ; 12(11): 3989-96, 2011 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-21954830

RESUMO

Collagen is a versatile structural molecule in nature and is used as a building block in many highly organized tissues, such as bone, skin, and cornea. The functionality and performance of these tissues are controlled by their hierarchical organization ranging from the molecular up to macroscopic length scales. In the present study, polarized Raman microspectroscopic and imaging analyses were used to elucidate collagen fibril orientation at various levels of structure in native rat tail tendon under mechanical load. In situ humidity-controlled uniaxial tensile tests have been performed concurrently with Raman confocal microscopy to evaluate strain-induced chemical and structural changes of collagen in tendon. The methodology is based on the sensitivity of specific Raman scattering bands (associated with distinct molecular vibrations, such as the amide I) to the orientation and the polarization direction of the incident laser light. Our results, based on the changing intensity of Raman lines as a function of orientation and polarization, support a model where the crimp and gap regions of collagen hierarchical structure are straightened at the tissue and molecular level, respectively. However, the lack of measurable changes in Raman peak positions throughout the whole range of strains investigated indicates that no significant changes of the collagen backbone occurs with tensing and suggests that deformation is rather redistributed through other levels of the hierarchical structure.


Assuntos
Colágenos Fibrilares/metabolismo , Análise Espectral Raman/instrumentação , Estresse Mecânico , Tendões/metabolismo , Animais , Anisotropia , Colágenos Fibrilares/química , Masculino , Estrutura Quaternária de Proteína , Ratos , Ratos Wistar , Tendões/química
12.
J Phys Chem C Nanomater Interfaces ; 125(40): 22239-22248, 2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34676020

RESUMO

Powder compaction-induced surface chemistry in metal oxide nanocrystal ensembles is important for very diverse fields such as triboelectrics, tribocatalysts, surface abrasion, and cold sintering of ceramics. Using a range of spectroscopic techniques, we show that MgO nanocube powder compaction with uniaxial pressures that can be achieved by gentle manual rubbing or pressing (p ≥ 5 MPa) excites energetic electron-hole pairs and generates oxygen radicals at interfacial defect structures. While the identification of paramagnetic O- radicals and their adsorption complexes with O2 point to the emergence of hole centers, triboemitted electrons become scavenged by molecular oxygen to convert into adsorbed superoxide anions O2 - as measured by electron paramagnetic resonance (EPR). By means of complementary UV-photoexcitation experiments, we found that photon energies in the range between 3 and 6 eV produce essentially the same EPR spectroscopic fingerprints and optical absorption features. To provide insights into this effect, we performed density functional theory calculations to explore the energetics of charge separation involving the ionization of low-coordinated anions and surface-adsorbed O2 - radicals at points of contact. For all selected configurations, charge transfer is not spontaneous but requires an additional driving force. We propose that a plausible mechanism for oxygen radical formation is the generation of significant surface potential differences at points of contact under loading as a result of the highly inhomogeneous elastic deformations coupled with the flexoelectric effect.

13.
Plant J ; 56(4): 531-8, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18643995

RESUMO

The mechanism of active stress generation in tension wood is still not fully understood. To characterize the functional interdependency between the G-layer and the secondary cell wall, nanostructural characterization and mechanical tests were performed on native tension wood tissues of poplar (Populus nigra x Populus deltoids) and on tissues in which the G-layer was removed by an enzymatic treatment. In addition to the well-known axial orientation of the cellulose fibrils in the G-layer, it was shown that the microfibril angle of the S2-layer was very large (about 36 degrees). The removal of the G-layer resulted in an axial extension and a tangential contraction of the tissues. The tensile stress-strain curves of native tension wood slices showed a jagged appearance after yield that could not be seen in the enzyme-treated samples. The behaviour of the native tissue was modelled by assuming that cells deform elastically up to a critical strain at which the G-layer slips, causing a drop in stress. The results suggest that tensile stresses in poplar are generated in the living plant by a lateral swelling of the G-layer which forces the surrounding secondary cell wall to contract in the axial direction.


Assuntos
Parede Celular/fisiologia , Microfibrilas/fisiologia , Populus/fisiologia , Estresse Mecânico , Elasticidade , Microscopia Eletrônica de Varredura , Espalhamento de Radiação , Resistência à Tração
14.
Front Plant Sci ; 10: 283, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30930918

RESUMO

Wildfires are a natural component in many terrestrial ecosystems and often play a crucial role in maintaining biodiversity, particularly in the fire-prone regions of Australia. A prime example of plants that are able to persist in these regions is the genus Banksia. Most Banksia species that occur in fire-prone regions produce woody seed pods (follicles), which open during or soon after fire to release seeds into the post-fire environment. For population persistence, many Banksia species depend on recruitment from these canopy-stored seeds. Therefore, it is critical that their seeds are protected from heat and rapid oxidation during fire. Here, we show how different species of Banksia protect their seeds inside follicles while simultaneously opening up when experiencing fire. The ability of the follicles to protect seeds from heat is demonstrated by intense 180 s experimental burns, in which the maximum temperatures near the seeds ranged from ∼75°C for B. serrata to ∼90°C for B. prionotes and ∼95°C for B. candolleana, contrasting with the mean surface temperature of ∼450°C. Many seeds of native Australian plants, including those of Banksia, are able to survive these temperatures. Structural analysis of individual follicles from these three Banksia species demonstrates that all of them rely on a multicomponent system, consisting of two valves, a porous separator and a thin layer of air surrounding the seeds. The particular geometric arrangement of these components determines the rate of heat transfer more than the tissue properties alone, revealing that a strong embedment into the central rachis can compensate for thin follicle valves. Furthermore, we highlight the role of the separator as an important thermal insulator. Our study suggests that the genus Banksia employs a variety of combinations in terms of follicle size, valve thickness, composition and geometric arrangement to effectively protect canopy-stored seeds during fire.

15.
Sci Adv ; 5(9): eaav9394, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31535019

RESUMO

The collective self-organization of cells into three-dimensional structures can give rise to emergent physical properties such as fluid behavior. Here, we demonstrate that tissues growing on curved surfaces develop shapes with outer boundaries of constant mean curvature, similar to the energy minimizing forms of liquids wetting a surface. The amount of tissue formed depends on the shape of the substrate, with more tissue being deposited on highly concave surfaces, indicating a mechano-biological feedback mechanism. Inhibiting cell-contractility further revealed that active cellular forces are essential for generating sufficient surface stresses for the liquid-like behavior and growth of the tissue. This suggests that the mechanical signaling between cells and their physical environment, along with the continuous reorganization of cells and matrix is a key principle for the emergence of tissue shape.


Assuntos
Proliferação de Células , Forma Celular , Osteoblastos/citologia , Engenharia Tecidual , Animais , Técnicas de Cultura de Células , Células Cultivadas , Cinética , Camundongos , Modelos Biológicos , Tensão Superficial
16.
J R Soc Interface ; 5(27): 1173-80, 2008 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-18348957

RESUMO

Tissue formation is determined by uncountable biochemical signals between cells; in addition, physical parameters have been shown to exhibit significant effects on the level of the single cell. Beyond the cell, however, there is still no quantitative understanding of how geometry affects tissue growth, which is of much significance for bone healing and tissue engineering. In this paper, it is shown that the local growth rate of tissue formed by osteoblasts is strongly influenced by the geometrical features of channels in an artificial three-dimensional matrix. Curvature-driven effects and mechanical forces within the tissue may explain the growth patterns as demonstrated by numerical simulation and confocal laser scanning microscopy. This implies that cells within the tissue surface are able to sense and react to radii of curvature much larger than the size of the cells themselves. This has important implications towards the understanding of bone remodelling and defect healing as well as towards scaffold design in bone tissue engineering.


Assuntos
Materiais Biocompatíveis/farmacologia , Desenvolvimento Ósseo , Durapatita/farmacologia , Osteoblastos/citologia , Engenharia Tecidual/métodos , Animais , Linhagem Celular , Simulação por Computador , Camundongos , Microscopia Confocal
17.
Sci Adv ; 4(1): eaao4881, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29349300

RESUMO

Myofibroblasts orchestrate wound healing processes, and if they remain activated, they drive disease progression such as fibrosis and cancer. Besides growth factor signaling, the local extracellular matrix (ECM) and its mechanical properties are central regulators of these processes. It remains unknown whether transforming growth factor-ß (TGF-ß) and tensile forces work synergistically in up-regulating the transition of fibroblasts into myofibroblasts and whether myofibroblasts undergo apoptosis or become deactivated by other means once tissue homeostasis is reached. We used three-dimensional microtissues grown in vitro from fibroblasts in macroscopically engineered clefts for several weeks and found that fibroblasts transitioned into myofibroblasts at the highly tensed growth front as the microtissue progressively closed the cleft, in analogy to closing a wound site. Proliferation was up-regulated at the growth front, and new highly stretched fibronectin fibers were deposited, as revealed by fibronectin fluorescence resonance energy transfer probes. As the tissue was growing, the ECM underneath matured into a collagen-rich tissue containing mostly fibroblasts instead of myofibroblasts, and the fibronectin fibers were under reduced tension. This correlated with a progressive rounding of cells from the growth front inward, with decreased α-smooth muscle actin expression, YAP nuclear translocation, and cell proliferation. Together, this suggests that the myofibroblast phenotype is stabilized at the growth front by tensile forces, even in the absence of endogenously supplemented TGF-ß, and reverts into a quiescent fibroblast phenotype already 10 µm behind the growth front, thus giving rise to a myofibroblast-to-fibroblast transition. This is the hallmark of reaching prohealing homeostasis.


Assuntos
Diferenciação Celular , Miofibroblastos/citologia , Resistência à Tração , Engenharia Tecidual/métodos , Actinas/metabolismo , Diferenciação Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Derme/citologia , Matriz Extracelular/metabolismo , Fibronectinas/metabolismo , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/metabolismo , Fator de Crescimento Transformador beta/farmacologia
18.
Phys Rev E ; 95(6-1): 062609, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28709318

RESUMO

We have studied the collective motion of polar active particles confined to ellipsoidal surfaces. The geometric constraints lead to the formation of vortices that encircle surface points of constant curvature (umbilics). We have found that collective motion patterns are particularly rich on ellipsoids with four umbilics where vortices tend to be located near pairs of umbilical points to minimize their interaction energy. Our results provide a perspective on the migration of living cells, which most likely use the information provided from the curved substrate geometry to guide their collective motion.

19.
Adv Mater ; 29(16)2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28218811

RESUMO

The first hygroscopically tunable cloth actuator is realized via impregnation of a commercial cloth template by a three dimensionally (3D) nanoporous polymer/carbon nanotube hybrid network. The nanoporous hybrid guarantees diffusion of water into the cloth actuator and amplifies the deformation scale. The cloth actuators are mechanically stable with high tensile strength. Because the commercial cotton cloth is inexpensive, such actuators capable of complex motions can be produced in a large size and scale for a wide variety of utilities (e.g. electric generators and "smart" materials).

20.
ACS Appl Mater Interfaces ; 9(17): 15148-15155, 2017 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-28374583

RESUMO

Porous and flexible actuating materials are important for the development of smart systems. We report here a facile method to prepare scalable, flexible actuating porous membranes based on a poly(ionic liquid)-modified tissue paper. The targeted membrane property profile was based on synergy of the gradient porous structure of a poly(ionic liquid) network and flexibility of a tissue paper. The gradient porous structure was built through an ammonia-triggered electrostatic complexation of a poly(ionic liquid) with poly(acrylic acid), which were previously impregnated inside the tissue paper. As a result, these porous membranes undergo deformation by bending in response to organic solvents in the vapor or liquid phase and can recover their shape in air, which demonstrates their ability to serve as solvent sensors. Besides, they show enhanced mechanical properties due to the introduction of mechanically flexible tissue paper that allows the membranes to be designed as new responsive textiles and contractile actuators.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA