Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Genes Brain Behav ; 22(2): e12840, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36807494

RESUMO

Stress is associated with contextual memory deficits, which may mediate avoidance of trauma-associated contexts in posttraumatic stress disorder. These deficits may emerge from impaired pattern separation, the independent representation of similar experiences by the dentate gyrus-Cornu Ammonis 3 (DG-CA3) circuit of the dorsal hippocampus, which allows for appropriate behavioral responses to specific environmental stimuli. Neurogenesis in the DG is controlled by mitochondrial reactive oxygen species (ROS) production, and may contribute to pattern separation. In Experiment 1, we performed RNA sequencing of the dorsal hippocampus 16 days after stress in rats that either develop conditioned place avoidance to a predator urine-associated context (Avoiders), or do not (Non-Avoiders). Weighted genome correlational network analysis showed that increased expression of oxidative phosphorylation-associated gene transcripts and decreased expression of gene transcripts for axon guidance and insulin signaling were associated with avoidance behavior. Based on these data, in Experiment 2, we hypothesized that Avoiders would exhibit elevated hippocampal (HPC) ROS production and degraded object pattern separation (OPS) compared with Nonavoiders. Stress impaired pattern separation performance in Non-Avoider and Avoider rats compared with nonstressed Controls, but surprisingly, Avoiders exhibited partly preserved pattern separation performance and significantly lower ROS production compared with Non-Avoiders. Lower ROS production was associated with better OPS performance in Stressed rats, but ROS production was not associated with OPS performance in Controls. These results suggest a strong negative association between HPC ROS production and pattern separation after stress, and that stress effects on these outcome variables may be associated with avoidance of a stress-paired context.


Assuntos
Hipocampo , Transtornos de Estresse Pós-Traumáticos , Ratos , Animais , Espécies Reativas de Oxigênio/farmacologia , Hipocampo/metabolismo , Região CA3 Hipocampal/metabolismo , Aprendizagem da Esquiva/fisiologia , Giro Denteado/metabolismo
2.
Neurobiol Stress ; 20: 100476, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36032405

RESUMO

Oxidative and lipid homeostasis are altered by stress and trauma and post-traumatic stress disorder (PTSD) is associated with alterations to lipid species in plasma. Stress-induced alterations to lipid oxidative and homeostasis may exacerbate PTSD pathology, but few preclinical investigations of stress-induced lipidomic changes in the brain exist. Currently available techniques for the quantification of lipid species in biological samples require tissue extraction and are limited in their ability to retrieve spatial information. Raman imaging can overcome this limitation through the quantification of lipid species in situ in minimally processed tissue slices. Here, we utilized a predator exposure and psychosocial stress (PE/PSS) model of traumatic stress to standardize Raman imaging of lipid species in the hippocampus using LC-MS based lipidomics and these data were confirmed with qRT-PCR measures of mRNA expression of relevant enzymes and transporters. Electron Paramagnetic Resonance Spectroscopy (EPR) was used to measure free radical production and an MDA assay to measure oxidized polyunsaturated fatty acids. We observed that PE/PSS is associated with increased cholesterol, altered lipid concentrations, increased free radical production and reduced oxidized polyunsaturated fats (PUFAs) in the hippocampus (HPC), indicating shifts in lipid and oxidative homeostasis in the HPC after traumatic stress.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA