Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Brain ; 146(12): 4964-4973, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37403733

RESUMO

Cognitive decline in Parkinson's disease is related to cholinergic system degeneration, which can be assessed in vivo using structural MRI markers of basal forebrain volume and PET measures of cortical cholinergic activity. In the present study we aimed to examine the interrelation between basal forebrain degeneration and PET-measured depletion of cortical acetylcholinesterase activity as well as their relative contribution to cognitive impairment in Parkinson's disease. This cross-sectional study included 143 Parkinson's disease participants without dementia and 52 healthy control participants who underwent structural MRI, PET scanning with 11C-methyl-4-piperidinyl propionate (PMP) as a measure of cortical acetylcholinesterase activity, and a detailed cognitive assessment. Based on the fifth percentile of the overall cortical PMP PET signal from the control group, people with Parkinson's disease were subdivided into a normo-cholinergic (n = 94) and a hypo-cholinergic group (n = 49). Volumes of functionally defined posterior and anterior basal forebrain subregions were extracted using an established automated MRI volumetry approach based on a stereotactic atlas of cholinergic basal forebrain nuclei. We used Bayesian t-tests to compare basal forebrain volumes between controls, and normo- and hypo-cholinergic Parkinson's participants after covarying out age, sex and years of education. Associations between the two cholinergic imaging measures were assessed across all people with Parkinson's disease using Bayesian correlations and their respective relations with performance in different cognitive domains were assessed with Bayesian ANCOVAs. As a specificity analysis, hippocampal volume was added to the analysis. We found evidence for a reduction of posterior basal forebrain volume in the hypo-cholinergic compared to both normo-cholinergic Parkinson's disease [Bayes factor against the null model (BF10) = 8.2] and control participants (BF10 = 6.0), while for the anterior basal forebrain the evidence was inconclusive (BF10 < 3). In continuous association analyses, posterior basal forebrain volume was significantly associated with cortical PMP PET signal in a temporo-posterior distribution. The combined models for the prediction of cognitive scores showed that both cholinergic markers (posterior basal forebrain volume and cortical PMP PET signal) were independently related to multi-domain cognitive deficits, and were more important predictors for all cognitive scores, including memory scores, than hippocampal volume. We conclude that degeneration of the posterior basal forebrain in Parkinson's disease is accompanied by functional cortical changes in acetylcholinesterase activity and that both PET and MRI cholinergic imaging markers are independently associated with multi-domain cognitive deficits in Parkinson's disease without dementia. Comparatively, hippocampal atrophy only seems to have minimal involvement in the development of early cognitive impairment in Parkinson's disease.


Assuntos
Prosencéfalo Basal , Disfunção Cognitiva , Demência , Doença de Parkinson , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico por imagem , Acetilcolinesterase/metabolismo , Teorema de Bayes , Estudos Transversais , Tomografia por Emissão de Pósitrons/métodos , Colinérgicos , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/complicações , Imageamento por Ressonância Magnética , Demência/complicações , Prosencéfalo Basal/diagnóstico por imagem , Prosencéfalo Basal/metabolismo
2.
Brain ; 146(5): 2075-2088, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36288546

RESUMO

Previous studies have shown that the cholinergic nucleus basalis of Meynert and its white matter projections are affected in Alzheimer's disease dementia and mild cognitive impairment. However, it is still unknown whether these alterations can be found in individuals with subjective cognitive decline, and whether they are more pronounced than changes found in conventional brain volumetric measurements. To address these questions, we investigated microstructural alterations of two major cholinergic pathways in individuals along the Alzheimer's disease continuum using an in vivo model of the human cholinergic system based on neuroimaging. We included 402 participants (52 Alzheimer's disease, 66 mild cognitive impairment, 172 subjective cognitive decline and 112 healthy controls) from the Deutsches Zentrum für Neurodegenerative Erkrankungen Longitudinal Cognitive Impairment and Dementia Study. We modelled the cholinergic white matter pathways with an enhanced diffusion neuroimaging pipeline that included probabilistic fibre-tracking methods and prior anatomical knowledge. The integrity of the cholinergic white matter pathways was compared between stages of the Alzheimer's disease continuum, in the whole cohort and in a CSF amyloid-beta stratified subsample. The discriminative power of the integrity of the pathways was compared to the conventional volumetric measures of hippocampus and nucleus basalis of Meynert, using a receiver operating characteristics analysis. A multivariate model was used to investigate the role of these pathways in relation to cognitive performance. We found that the integrity of the cholinergic white matter pathways was significantly reduced in all stages of the Alzheimer's disease continuum, including individuals with subjective cognitive decline. The differences involved posterior cholinergic white matter in the subjective cognitive decline stage and extended to anterior frontal white matter in mild cognitive impairment and Alzheimer's disease dementia stages. Both cholinergic pathways and conventional volumetric measures showed higher predictive power in the more advanced stages of the disease, i.e. mild cognitive impairment and Alzheimer's disease dementia. In contrast, the integrity of cholinergic pathways was more informative in distinguishing subjective cognitive decline from healthy controls, as compared with the volumetric measures. The multivariate model revealed a moderate contribution of the cholinergic white matter pathways but not of volumetric measures towards memory tests in the subjective cognitive decline and mild cognitive impairment stages. In conclusion, we demonstrated that cholinergic white matter pathways are altered already in subjective cognitive decline individuals, preceding the more widespread alterations found in mild cognitive impairment and Alzheimer's disease. The integrity of the cholinergic pathways identified the early stages of Alzheimer's disease better than conventional volumetric measures such as hippocampal volume or volume of cholinergic nucleus basalis of Meynert.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Substância Branca , Humanos , Doença de Alzheimer/psicologia , Encéfalo , Disfunção Cognitiva/psicologia , Colinérgicos
3.
Hum Brain Mapp ; 44(18): 6364-6374, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37846762

RESUMO

Alzheimer's disease (AD) is one of the most prevalent forms of dementia in older individuals. Convergent evidence suggests structural connectome abnormalities in specific brain regions are linked to AD progression. The biological basis underpinnings of these connectome changes, however, have remained elusive. We utilized an individual regional mean connectivity strength (RMCS) derived from a regional radiomics similarity network to capture altered morphological connectivity in 1654 participants (605 normal controls, 766 mild cognitive impairment [MCI], and 283 AD). Then, we also explored the biological basis behind these morphological changes through gene enrichment analysis and cell-specific analysis. We found that RMCS probes of the hippocampus and medial temporal lobe were significantly altered in AD and MCI, with these differences being spatially related to the expression of AD-risk genes. In addition, gene enrichment analysis revealed that the modulation of chemical synaptic transmission is the most relevant biological process associated with the altered RMCS in AD. Notably, neuronal cells were found to be the most pertinent cells in the altered RMCS. Our findings shed light on understanding the biological basis of structural connectome changes in AD, which may ultimately lead to more effective diagnostic and therapeutic strategies for this devastating disease.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Conectoma , Humanos , Idoso , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/metabolismo , Disfunção Cognitiva/diagnóstico por imagem , Transcrição Gênica
4.
Cereb Cortex ; 31(12): 5549-5559, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34171095

RESUMO

Several observations suggest an impact of prematurity on the claustrum. First, the claustrum's development appears to depend on transient subplate neurons of intra-uterine brain development, which are affected by prematurity. Second, the claustrum is the most densely connected region of the mammalian forebrain relative to its volume; due to its effect on pre-oligodendrocytes, prematurity impacts white matter connections and thereby the development of sources and targets of such connections, potentially including the claustrum. Third, due to its high connection degree, the claustrum contributes to general cognitive functioning (e.g., selective attention and task switching/maintaining); general cognitive functioning, however, is at risk in prematurity. Thus, we hypothesized altered claustrum structure after premature birth, with these alterations being associated with impaired general cognitive performance in premature born persons. Using T1-weighted and diffusion-weighted magnetic resonance imaging in 70 very preterm/very low-birth-weight (VP/VLBW) born adults and 87 term-born adults, we found specifically increased mean diffusivity in the claustrum of VP/VLBW adults, associated both with low birth weight and at-trend with reduced IQ. This result demonstrates altered claustrum microstructure after premature birth. Data suggest aberrant claustrum development, which is potentially related with aberrant subplate neuron and forebrain connection development of prematurity.


Assuntos
Claustrum , Nascimento Prematuro , Substância Branca , Encéfalo/patologia , Imagem de Difusão por Ressonância Magnética , Feminino , Humanos , Lactente Extremamente Prematuro , Recém-Nascido , Recém-Nascido de muito Baixo Peso/fisiologia , Imageamento por Ressonância Magnética , Gravidez , Nascimento Prematuro/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/patologia
5.
Nervenarzt ; 92(1): 18-26, 2021 Jan.
Artigo em Alemão | MEDLINE | ID: mdl-32409844

RESUMO

Limbic-predominant age-related TDP-43 (Transactivation response(TAR)-DNA-binding protein 43 kDa) encephalopathy (LATE) has recently been characterized as a distinct neuropathological entity within the spectrum of dementia. Neuropathological alterations in the sense of LATE were already previously described as a comorbidity to Alzheimer's disease (AD) and it has been diagnosed independently from AD pathology in autopsy studies since 2008. The framework of LATE would account for the pathogenetic impact of limbic TDP-43 proteinopathy as a driver of amnestic dementia, either together with comorbid typical AD changes or as a distinct feature. The LATE possibly explains divergent clinical observations and biomarker results in patients suffering from severe amnestic impairment without biomarker evidence of AD-related amyloid and tau alterations. Whether LATE represents a distinct neuropathological entity or is part of the spectrum of neurodegenerative diseases associated with TDP-43 is currently a matter of debate. Further studies on the role of TDP-43 in the development of amnestic dementia are urgently needed. Thus, the enrichment of an amnestic phenotype in amyloid-centered therapeutic drug studies bears the risk of higher rates of patients with TDP-43 comorbidity, which could hinder the proof of efficacy in such trials. This article presents the current state of the discussion on LATE and illustrates the concept and the clinical considerations with a case study.


Assuntos
Doença de Alzheimer , Proteinopatias TDP-43 , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/epidemiologia , Proteínas de Ligação a DNA/genética , Humanos , Proteinopatias TDP-43/genética
6.
Hum Brain Mapp ; 40(3): 868-878, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30311315

RESUMO

The cholinergic basal forebrain (CBF), comprising different groups of cortically projecting cholinergic neurons, plays a crucial role in higher cognitive processes and has been implicated in diverse neuropsychiatric disorders. A distinct corticotopic organization of CBF projections has been revealed in animal studies, but little is known about their organization in the human brain. We explored regional differences in functional connectivity (FC) profiles within the human CBF by applying a clustering approach to resting-state functional magnetic resonance imaging (rs-fMRI) data of healthy adult individuals (N = 85; 19-85 years). We further examined effects of age on FC of the identified CBF clusters and assessed the reproducibility of cluster-specific FC profiles in independent data from healthy older individuals (N = 25; 65-89 years). Results showed that the human CBF is functionally organized into distinct anterior-medial and posterior-lateral subdivisions that largely follow anatomically defined boundaries of the medial septum/diagonal band and nucleus basalis Meynert. The anterior-medial CBF subdivision was characterized by connectivity with the hippocampus and interconnected nodes of an extended medial cortical memory network, whereas the posterior-lateral subdivision was specifically connected to anterior insula and dorsal anterior cingulate components of a salience/attention network. FC of both CBF subdivisions declined with increasing age, but the overall topography of subregion-specific FC profiles was reproduced in independent rs-fMRI data of healthy older individuals acquired in a typical clinical setting. Rs-fMRI-based assessments of subregion-specific CBF function may complement established volumetric approaches for the in vivo study of CBF involvement in neuropsychiatric disorders.


Assuntos
Envelhecimento , Prosencéfalo Basal/anatomia & histologia , Vias Neurais/anatomia & histologia , Adulto , Idoso , Prosencéfalo Basal/fisiologia , Mapeamento Encefálico/métodos , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Vias Neurais/fisiologia
7.
Neuroimage ; 144(Pt B): 305-308, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27046114

RESUMO

The European DTI Study on Dementia (EDSD) is a multicenter framework created to study the diagnostic accuracy and inter-site variability of DTI-derived markers in patients with manifest and prodromal Alzheimer's disease (AD). The dynamically growing database presently includes 493 DTI, 512 T1-weighted MRI, and 300 FLAIR scans from patients with AD dementia, patients with Mild Cognitive Impairment (MCI) and matched Healthy Controls, acquired on 13 different scanner platforms. The imaging data is publicly available, along with the subjects' demographic and clinical characterization. Detailed neuropsychological information, cerebrospinal fluid information on biomarkers and clinical follow-up diagnoses are included for a subset of subjects. This paper describes the rationale and structure of the EDSD, summarizes the available data, and explains how to gain access to the database. The EDSD is a useful database for researchers seeking to investigate the contribution of DTI to dementia diagnostics.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Bases de Dados Factuais , Imagem de Tensor de Difusão , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Disseminação de Informação , Masculino , Pessoa de Meia-Idade
8.
J Int Neuropsychol Soc ; 22(2): 138-63, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26888613

RESUMO

OBJECTIVES: The objective was to review the literature on diffusion tensor imaging as well as resting-state functional magnetic resonance imaging and electroencephalography (EEG) to unveil neuroanatomical and neurophysiological substrates of Alzheimer's disease (AD) as a brain neural network pathology affecting structural and functional cortical connectivity underlying human cognition. METHODS: We reviewed papers registered in PubMed and other scientific repositories on the use of these techniques in amnesic mild cognitive impairment (MCI) and clinically mild AD dementia patients compared to cognitively intact elderly individuals (Controls). RESULTS: Hundreds of peer-reviewed (cross-sectional and longitudinal) papers have shown in patients with MCI and mild AD compared to Controls (1) impairment of callosal (splenium), thalamic, and anterior-posterior white matter bundles; (2) reduced correlation of resting state blood oxygen level-dependent activity across several intrinsic brain circuits including default mode and attention-related networks; and (3) abnormal power and functional coupling of resting state cortical EEG rhythms. Clinical applications of these measures are still limited. CONCLUSIONS: Structural and functional (in vivo) cortical connectivity measures represent a reliable marker of cerebral reserve capacity and should be used to predict and monitor the evolution of AD and its relative impact on cognitive domains in pre-clinical, prodromal, and dementia stages of AD.


Assuntos
Doença de Alzheimer/patologia , Mapeamento Encefálico , Córtex Cerebral/patologia , Rede Nervosa/patologia , Doença de Alzheimer/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/fisiopatologia , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Rede Nervosa/diagnóstico por imagem , Oxigênio/sangue
9.
Hum Brain Mapp ; 36(6): 2118-31, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25664619

RESUMO

Alzheimer's disease (AD) patients exhibit alterations in the functional connectivity between spatially segregated brain regions which may be related to both local gray matter (GM) atrophy as well as a decline in the fiber integrity of the underlying white matter tracts. Machine learning algorithms are able to automatically detect the patterns of the disease in image data, and therefore, constitute a suitable basis for automated image diagnostic systems. The question of which magnetic resonance imaging (MRI) modalities are most useful in a clinical context is as yet unresolved. We examined multimodal MRI data acquired from 28 subjects with clinically probable AD and 25 healthy controls. Specifically, we used fiber tract integrity as measured by diffusion tensor imaging (DTI), GM volume derived from structural MRI, and the graph-theoretical measures 'local clustering coefficient' and 'shortest path length' derived from resting-state functional MRI (rs-fMRI) to evaluate the utility of the three imaging methods in automated multimodal image diagnostics, to assess their individual performance, and the level of concordance between them. We ran the support vector machine (SVM) algorithm and validated the results using leave-one-out cross-validation. For the single imaging modalities, we obtained an area under the curve (AUC) of 80% for rs-fMRI, 87% for DTI, and 86% for GM volume. When it came to the multimodal SVM, we obtained an AUC of 82% using all three modalities, and 89% using only DTI measures and GM volume. Combined multimodal imaging data did not significantly improve classification accuracy compared to the best single measures alone.


Assuntos
Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Encéfalo/patologia , Encéfalo/fisiopatologia , Imagem de Tensor de Difusão/métodos , Imageamento por Ressonância Magnética/métodos , Imagem Multimodal/métodos , Máquina de Vetores de Suporte , Idoso , Área Sob a Curva , Mapeamento Encefálico/métodos , Feminino , Substância Cinzenta/patologia , Substância Cinzenta/fisiopatologia , Humanos , Masculino , Reconhecimento Automatizado de Padrão/métodos , Descanso
10.
Alzheimers Dement ; 10(3): 401-4, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-23706516

RESUMO

BACKGROUND: In this multicenter study, we investigated a possible association between the APOE ε4 allele and white matter (WM) integrity in Alzheimer's disease (AD) using diffusion tensor imaging (DTI). METHODS: We analyzed fractional anisotropy (FA) and mean diffusivity (MD) as indices of WM integrity in 70 AD patients (35 APOE ε4 carriers, 35 noncarriers) and 56 healthy control (HC) subjects (28 APOE ε4 carriers, 28 noncarriers). APOE ε4 carriers and noncarriers were matched for age and gender within each diagnostic group. RESULTS: We found significant effects of diagnosis (Pcorrected < .05 [FWE]; i.e., smaller FA values and larger MD values in AD patients compared with HCs) and significant effects (P < .001) of APOE ε4 carrier status on MD in HCs but not in AD subjects. CONCLUSIONS: The results indicate that APOE ε4 has a moderate effect on WM integrity in HCs, but no effect on WM integrity in manifest AD.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Apolipoproteína E4/genética , Encéfalo/patologia , Substância Branca/patologia , Idoso , Idoso de 80 Anos ou mais , Anisotropia , Imagem de Difusão por Ressonância Magnética , Imagem de Tensor de Difusão , Feminino , Genótipo , Heterozigoto , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA