Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Nature ; 613(7943): 340-344, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36384167

RESUMO

During recent decades, pathogens that originated in bats have become an increasing public health concern. A major challenge is to identify how those pathogens spill over into human populations to generate a pandemic threat1. Many correlational studies associate spillover with changes in land use or other anthropogenic stressors2,3, although the mechanisms underlying the observed correlations have not been identified4. One limitation is the lack of spatially and temporally explicit data on multiple spillovers, and on the connections among spillovers, reservoir host ecology and behaviour and viral dynamics. We present 25 years of data on land-use change, bat behaviour and spillover of Hendra virus from Pteropodid bats to horses in subtropical Australia. These data show that bats are responding to environmental change by persistently adopting behaviours that were previously transient responses to nutritional stress. Interactions between land-use change and climate now lead to persistent bat residency in agricultural areas, where periodic food shortages drive clusters of spillovers. Pulses of winter flowering of trees in remnant forests appeared to prevent spillover. We developed integrative Bayesian network models based on these phenomena that accurately predicted the presence or absence of clusters of spillovers in each of the 25 years. Our long-term study identifies the mechanistic connections between habitat loss, climate and increased spillover risk. It provides a framework for examining causes of bat virus spillover and for developing ecological countermeasures to prevent pandemics.


Assuntos
Quirópteros , Ecologia , Ecossistema , Vírus Hendra , Cavalos , Animais , Humanos , Austrália , Teorema de Bayes , Quirópteros/virologia , Clima , Cavalos/virologia , Saúde Pública , Vírus Hendra/isolamento & purificação , Recursos Naturais , Agricultura , Florestas , Abastecimento de Alimentos , Pandemias/prevenção & controle , Pandemias/veterinária
2.
Ecol Lett ; 26(1): 23-36, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36310377

RESUMO

The ecological conditions experienced by wildlife reservoirs affect infection dynamics and thus the distribution of pathogen excreted into the environment. This spatial and temporal distribution of shed pathogen has been hypothesised to shape risks of zoonotic spillover. However, few systems have data on both long-term ecological conditions and pathogen excretion to advance mechanistic understanding and test environmental drivers of spillover risk. We here analyse three years of Hendra virus data from nine Australian flying fox roosts with covariates derived from long-term studies of bat ecology. We show that the magnitude of winter pulses of viral excretion, previously considered idiosyncratic, are most pronounced after recent food shortages and in bat populations displaced to novel habitats. We further show that cumulative pathogen excretion over time is shaped by bat ecology and positively predicts spillover frequency. Our work emphasises the role of reservoir host ecology in shaping pathogen excretion and provides a new approach to estimate spillover risk.


Assuntos
Quirópteros , Vírus Hendra , Animais , Austrália , Estações do Ano
3.
Emerg Infect Dis ; 28(5): 1043-1047, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35447052

RESUMO

A novel Hendra virus variant, genotype 2, was recently discovered in a horse that died after acute illness and in Pteropus flying fox tissues in Australia. We detected the variant in flying fox urine, the pathway relevant for spillover, supporting an expanded geographic range of Hendra virus risk to horses and humans.


Assuntos
Quirópteros , Vírus Hendra , Infecções por Henipavirus , Animais , Austrália/epidemiologia , Vírus Hendra/genética , Infecções por Henipavirus/epidemiologia , Infecções por Henipavirus/veterinária , Cavalos
4.
J Anim Ecol ; 91(5): 916-932, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34778965

RESUMO

Models of host-pathogen interactions help to explain infection dynamics in wildlife populations and to predict and mitigate the risk of zoonotic spillover. Insights from models inherently depend on the way contacts between hosts are modelled, and crucially, how transmission scales with animal density. Bats are important reservoirs of zoonotic disease and are among the most gregarious of all mammals. Their population structures can be highly heterogeneous, underpinned by ecological processes across different scales, complicating assumptions regarding the nature of contacts and transmission. Although models commonly parameterise transmission using metrics of total abundance, whether this is an ecologically representative approximation of host-pathogen interactions is not routinely evaluated. We collected a 13-month dataset of tree-roosting Pteropus spp. from 2,522 spatially referenced trees across eight roosts to empirically evaluate the relationship between total roost abundance and tree-level measures of abundance and density-the scale most likely to be relevant for virus transmission. We also evaluate whether roost features at different scales (roost level, subplot level, tree level) are predictive of these local density dynamics. Roost-level features were not representative of tree-level abundance (bats per tree) or tree-level density (bats per m2 or m3 ), with roost-level models explaining minimal variation in tree-level measures. Total roost abundance itself was either not a significant predictor (tree-level 3D density) or only weakly predictive (tree-level abundance). This indicates that basic measures, such as total abundance of bats in a roost, may not provide adequate approximations for population dynamics at scales relevant for transmission, and that alternative measures are needed to compare transmission potential between roosts. From the best candidate models, the strongest predictor of local population structure was tree density within roosts, where roosts with low tree density had a higher abundance but lower density of bats (more spacing between bats) per tree. Together, these data highlight unpredictable and counterintuitive relationships between total abundance and local density. More nuanced modelling of transmission, spread and spillover from bats likely requires alternative approaches to integrating contact structure in host-pathogen models, rather than simply modifying the transmission function.


Assuntos
Quirópteros , Doenças Transmissíveis , Animais , Dinâmica Populacional , Árvores
5.
J Anim Ecol ; 90(11): 2609-2622, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34192345

RESUMO

The spatial organization of populations determines their pathogen dynamics. This is particularly important for communally roosting species, whose aggregations are often driven by the spatial structure of their environment. We develop a spatially explicit model for virus transmission within roosts of Australian tree-dwelling bats (Pteropus spp.), parameterized to reflect Hendra virus. The spatial structure of roosts mirrors three study sites, and viral transmission between groups of bats in trees was modelled as a function of distance between roost trees. Using three levels of tree density to reflect anthropogenic changes in bat habitats, we investigate the potential effects of recent ecological shifts in Australia on the dynamics of zoonotic viruses in reservoir hosts. We show that simulated infection dynamics in spatially structured roosts differ from that of mean-field models for equivalently sized populations, highlighting the importance of spatial structure in disease models of gregarious taxa. Under contrasting scenarios of flying-fox roosting structures, sparse stand structures (with fewer trees but more bats per tree) generate higher probabilities of successful outbreaks, larger and faster epidemics, and shorter virus extinction times, compared to intermediate and dense stand structures with more trees but fewer bats per tree. These observations are consistent with the greater force of infection generated by structured populations with less numerous but larger infected groups, and may flag an increased risk of pathogen spillover from these increasingly abundant roost types. Outputs from our models contribute insights into the spread of viruses in structured animal populations, like communally roosting species, as well as specific insights into Hendra virus infection dynamics and spillover risk in a situation of changing host ecology. These insights will be relevant for modelling other zoonotic viruses in wildlife reservoir hosts in response to habitat modification and changing populations, including coronaviruses like SARS-CoV-2.


Assuntos
COVID-19 , Quirópteros , Vírus , Animais , Austrália , Ecossistema , SARS-CoV-2
6.
Proc Biol Sci ; 282(1798): 20142124, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25392474

RESUMO

Viruses that originate in bats may be the most notorious emerging zoonoses that spill over from wildlife into domestic animals and humans. Understanding how these infections filter through ecological systems to cause disease in humans is of profound importance to public health. Transmission of viruses from bats to humans requires a hierarchy of enabling conditions that connect the distribution of reservoir hosts, viral infection within these hosts, and exposure and susceptibility of recipient hosts. For many emerging bat viruses, spillover also requires viral shedding from bats, and survival of the virus in the environment. Focusing on Hendra virus, but also addressing Nipah virus, Ebola virus, Marburg virus and coronaviruses, we delineate this cross-species spillover dynamic from the within-host processes that drive virus excretion to land-use changes that increase interaction among species. We describe how land-use changes may affect co-occurrence and contact between bats and recipient hosts. Two hypotheses may explain temporal and spatial pulses of virus shedding in bat populations: episodic shedding from persistently infected bats or transient epidemics that occur as virus is transmitted among bat populations. Management of livestock also may affect the probability of exposure and disease. Interventions to decrease the probability of virus spillover can be implemented at multiple levels from targeting the reservoir host to managing recipient host exposure and susceptibility.


Assuntos
Quirópteros/virologia , Modelos Biológicos , Infecções por Vírus de RNA/transmissão , Vírus de RNA/fisiologia , Zoonoses/transmissão , Animais , Humanos , Queensland , Infecções por Vírus de RNA/virologia , Vírus de RNA/isolamento & purificação , Zoonoses/virologia
7.
One Health ; 15: 100423, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36277112

RESUMO

In October 2021, the first contemporary detection of Hendra virus genotype 2 (HeV-g2) was made by veterinary priority disease investigation in a horse near Newcastle, New South Wales, Australia, as part of routine veterinary priority disease surveillance. This discovery followed an update of Hendra virus diagnostic assays following retrospective identification of this variant from 2015 via sentinel emerging infectious disease research, enabling timely detection of this case. The sole infected horse was euthanized in moribund condition. As the southernmost recognised HeV spill-over detection to date, it extends the southern limit of known cases by approximately 95 km. The event occurred near a large urban centre, characterised by equine populations of diverse type, husbandry, and purpose, with low HeV vaccination rates. Urgent multi-agency outbreak response involved risk assessment and monitoring of 11 exposed people and biosecurity management of at-risk animals. No human or additional animal cases were recognised. This One Health investigation highlights need for research on risk perception and strategic engagement to support owners confronted with the death of companion animals and potential human exposure to a high consequence virus. The location and timing of this spill-over event diverging from that established for prototype HeV (HeV-g1), highlight benefit in proactive One Health surveillance and research activities that improve understanding of dynamic transmission and spill-over risks of both HeV genotypic lineages and related but divergent emerging pathogens.

8.
Proc Biol Sci ; 278(1725): 3703-12, 2011 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-21561971

RESUMO

Anthropogenic environmental change is often implicated in the emergence of new zoonoses from wildlife; however, there is little mechanistic understanding of these causal links. Here, we examine the transmission dynamics of an emerging zoonotic paramyxovirus, Hendra virus (HeV), in its endemic host, Australian Pteropus bats (fruit bats or flying foxes). HeV is a biosecurity level 4 (BSL-4) pathogen, with a high case-fatality rate in humans and horses. With models parametrized from field and laboratory data, we explore a set of probable contributory mechanisms that explain the spatial and temporal pattern of HeV emergence; including urban habituation and decreased migration-two widely observed changes in flying fox ecology that result from anthropogenic transformation of bat habitat in Australia. Urban habituation increases the number of flying foxes in contact with human and domestic animal populations, and our models suggest that, in addition, decreased bat migratory behaviour could lead to a decline in population immunity, giving rise to more intense outbreaks after local viral reintroduction. Ten of the 14 known HeV outbreaks occurred near urbanized or sedentary flying fox populations, supporting these predictions. We also demonstrate that by incorporating waning maternal immunity into our models, the peak modelled prevalence coincides with the peak annual spill-over hazard for HeV. These results provide the first detailed mechanistic framework for understanding the sporadic temporal pattern of HeV emergence, and of the urban/peri-urban distribution of HeV outbreaks in horses and people.


Assuntos
Quirópteros/virologia , Ecossistema , Epidemias , Vírus Hendra , Infecções por Henipavirus/transmissão , Animais , Austrália , Teorema de Bayes , Infecções por Henipavirus/epidemiologia , Infecções por Henipavirus/imunologia , Humanos , Dinâmica Populacional , Zoonoses/epidemiologia , Zoonoses/virologia
9.
Ecol Evol ; 11(19): 13532-13558, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34646488

RESUMO

Fruit bats (Family: Pteropodidae) are animals of great ecological and economic importance, yet their populations are threatened by ongoing habitat loss and human persecution. A lack of ecological knowledge for the vast majority of Pteropodid species presents additional challenges for their conservation and management.In Australia, populations of flying-fox species (Genus: Pteropus) are declining and management approaches are highly contentious. Australian flying-fox roosts are exposed to management regimes involving habitat modification, through human-wildlife conflict management policies, or vegetation restoration programs. Details on the fine-scale roosting ecology of flying-foxes are not sufficiently known to provide evidence-based guidance for these regimes, and the impact on flying-foxes of these habitat modifications is poorly understood.We seek to identify and test commonly held understandings about the roosting ecology of Australian flying-foxes to inform practical recommendations and guide and refine management practices at flying-fox roosts.We identify 31 statements relevant to understanding of flying-fox roosting structure and synthesize these in the context of existing literature. We then contribute a contemporary, fine-scale dataset on within-roost structure to further evaluate 11 of these statements. The new dataset encompasses 13-monthly repeat measures from 2,522 spatially referenced roost trees across eight sites in southeastern Queensland and northeastern New South Wales.We show evidence of sympatry and indirect competition between species, including spatial segregation of black and grey-headed flying-foxes within roosts and seasonal displacement of both species by little red flying-foxes. We demonstrate roost-specific annual trends in occupancy and abundance and provide updated demographic information including the spatial and temporal distributions of males and females within roosts.Insights from our systematic and quantitative study will be important to guide evidence-based recommendations on restoration and management and will be crucial for the implementation of priority recovery actions for the preservation of these species in the future.

10.
Proc Biol Sci ; 275(1633): 419-25, 2008 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-18048286

RESUMO

Little is known about the effects of temperature extremes on natural systems. This is of increasing concern now that climate models predict dramatic increases in the intensity, duration and frequency of such extremes. Here we examine the effects of temperature extremes on behaviour and demography of vulnerable wild flying-foxes (Pteropus spp.). On 12 January 2002 in New South Wales, Australia, temperatures exceeding 42 degrees C killed over 3500 individuals in nine mixed-species colonies. In one colony, we recorded a predictable sequence of thermoregulatory behaviours (wing-fanning, shade-seeking, panting and saliva-spreading, respectively) and witnessed how 5-6% of bats died from hyperthermia. Mortality was greater among the tropical black flying-fox, Pteropus alecto (10-13%) than the temperate grey-headed flying-fox, Pteropus poliocephalus (less than 1%), and young and adult females were more affected than adult males (young, 23-49%; females, 10-15%; males, less than 3%). Since 1994, over 30000 flying-foxes (including at least 24500 P. poliocephalus) were killed during 19 similar events. Although P. alecto was relatively less affected, it is currently expanding its range into the more variable temperature envelope of P. poliocephalus, which increases the likelihood of die-offs occurring in this species. Temperature extremes are important additional threats to Australian flying-foxes and the ecosystem services they provide, and we recommend close monitoring of colonies where temperatures exceeding 42.0 degrees C are predicted. The effects of temperature extremes on flying-foxes highlight the complex implications of climate change for behaviour, demography and species survival.


Assuntos
Regulação da Temperatura Corporal/fisiologia , Quirópteros/fisiologia , Clima , Efeito Estufa , Mortalidade , Temperatura , Fatores Etários , Animais , Feminino , Geografia , Masculino , New South Wales , Observação , Dinâmica Populacional , Fatores Sexuais
11.
Artigo em Inglês | MEDLINE | ID: mdl-29531151

RESUMO

Bats provide important ecosystem services such as pollination of native forests; they are also a source of zoonotic pathogens for humans and domestic animals. Human-induced changes to native habitats may have created more opportunities for bats to reside in urban settings, thus decreasing pollination services to native forests and increasing opportunities for zoonotic transmission. In Australia, fruit bats (Pteropus spp. flying foxes) are increasingly inhabiting urban areas where they feed on anthropogenic food sources with nutritional characteristics and phenology that differ from native habitats. We use optimal foraging theory to investigate the relationship between bat residence time in a patch, the time it takes to search for a new patch (simulating loss of native habitat) and seasonal resource production. We show that it can be beneficial to reside in a patch, even when food productivity is low, as long as foraging intensity is low and the expected searching time is high. A small increase in the expected patch searching time greatly increases the residence time, suggesting nonlinear associations between patch residence and loss of seasonal native resources. We also found that sudden increases in resource consumption due to an influx of new bats has complex effects on patch departure times that again depend on expected searching times and seasonality. Our results suggest that the increased use of urban landscapes by bats may be a response to new spatial and temporal configurations of foraging opportunities. Given that bats are reservoir hosts of zoonotic diseases, our results provide a framework to study the effects of foraging ecology on disease dynamics.One contribution of 14 to a theme isssue 'Anthropogenic resource subsidies and host-parasite dynamics in wildlife'.


Assuntos
Ração Animal/provisão & distribuição , Migração Animal/fisiologia , Quirópteros/fisiologia , Comportamento Alimentar/fisiologia , Animais , Animais Selvagens , Austrália , Cidades , Ecossistema , Flores/fisiologia , Frutas/fisiologia , Plantas , Dinâmica Populacional , Estações do Ano , Fatores de Tempo
12.
Sci Rep ; 8(1): 9555, 2018 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-29934514

RESUMO

In the Australian subtropics, flying-foxes (family Pteropididae) play a fundamental ecological role as forest pollinators. Flying-foxes are also reservoirs of the fatal zoonosis, Hendra virus. Understanding flying fox foraging ecology, particularly in agricultural areas during winter, is critical to determine their role in transmitting Hendra virus to horses and humans. We developed a spatiotemporal model of flying-fox foraging intensity based on foraging patterns of 37 grey-headed flying-foxes (Pteropus poliocephalus) using GPS tracking devices and boosted regression trees. We validated the model with independent population counts and summarized temporal patterns in terms of spatial resource concentration. We found that spatial resource concentration was highest in late-summer and lowest in winter, with lowest values in winter 2011, the same year an unprecedented cluster of spillover events occurred in Queensland and New South Wales. Spatial resource concentration was positively correlated with El Niño Southern Oscillation at 3-8 month time lags. Based on shared foraging traits with the primary reservoir of Hendra virus (Pteropus alecto), we used our results to develop hypotheses on how regional climatic history, eucalypt phenology, and foraging behaviour may contribute to the predominance of winter spillovers, and how these phenomena connote foraging habitat conservation as a public health intervention.


Assuntos
Comportamento Animal , Quirópteros/virologia , Meio Ambiente , Vírus Hendra/fisiologia , Modelos Estatísticos , Análise Espaço-Temporal , Animais
13.
Ann N Y Acad Sci ; 1429(1): 78-99, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30138535

RESUMO

Old World fruit bats (Chiroptera: Pteropodidae) provide critical pollination and seed dispersal services to forest ecosystems across Africa, Asia, and Australia. In each of these regions, pteropodids have been identified as natural reservoir hosts for henipaviruses. The genus Henipavirus includes Hendra virus and Nipah virus, which regularly spill over from bats to domestic animals and humans in Australia and Asia, and a suite of largely uncharacterized African henipaviruses. Rapid change in fruit bat habitat and associated shifts in their ecology and behavior are well documented, with evidence suggesting that altered diet, roosting habitat, and movement behaviors are increasing spillover risk of bat-borne viruses. We review the ways that changing resource landscapes affect the processes that culminate in cross-species transmission of henipaviruses, from reservoir host density and distribution to within-host immunity and recipient host exposure. We evaluate existing evidence and highlight gaps in knowledge that are limiting our understanding of the ecological drivers of henipavirus spillover. When considering spillover in the context of land-use change, we emphasize that it is especially important to disentangle the effects of habitat loss and resource provisioning on these processes, and to jointly consider changes in resource abundance, quality, and composition.


Assuntos
Quirópteros/virologia , Ecossistema , Infecções por Henipavirus/veterinária , Animais , Comportamento Animal , Ecologia
14.
Ecol Evol ; 6(20): 7230-7245, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27891217

RESUMO

Fruit bats (Pteropodidae) have received increased attention after the recent emergence of notable viral pathogens of bat origin. Their vagility hinders data collection on abundance and distribution, which constrains modeling efforts and our understanding of bat ecology, viral dynamics, and spillover. We addressed this knowledge gap with models and data on the occurrence and abundance of nectarivorous fruit bat populations at 3 day roosts in southeast Queensland. We used environmental drivers of nectar production as predictors and explored relationships between bat abundance and virus spillover. Specifically, we developed several novel modeling tools motivated by complexities of fruit bat foraging ecology, including: (1) a dataset of spatial variables comprising Eucalypt-focused vegetation indices, cumulative precipitation, and temperature anomaly; (2) an algorithm that associated bat population response with spatial covariates in a spatially and temporally relevant way given our current understanding of bat foraging behavior; and (3) a thorough statistical learning approach to finding optimal covariate combinations. We identified covariates that classify fruit bat occupancy at each of our three study roosts with 86-93% accuracy. Negative binomial models explained 43-53% of the variation in observed abundance across roosts. Our models suggest that spatiotemporal heterogeneity in Eucalypt-based food resources could drive at least 50% of bat population behavior at the landscape scale. We found that 13 spillover events were observed within the foraging range of our study roosts, and they occurred during times when models predicted low population abundance. Our results suggest that, in southeast Queensland, spillover may not be driven by large aggregations of fruit bats attracted by nectar-based resources, but rather by behavior of smaller resident subpopulations. Our models and data integrated remote sensing and statistical learning to make inferences on bat ecology and disease dynamics. This work provides a foundation for further studies on landscape-scale population movement and spatiotemporal disease dynamics.

15.
PLoS One ; 7(8): e42532, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22880021

RESUMO

Flying-foxes (Pteropodidae) are large bats capable of long-distance flight. Many species are threatened; some are considered pests. Effective conservation and management of flying-foxes are constrained by lack of knowledge of their ecology, especially of movement patterns over large spatial scales. Using satellite telemetry, we quantified long-distance movements of the grey-headed flying-fox Pteropus poliocephalus among roost sites in eastern Australia. Fourteen adult males were tracked for 2-40 weeks (mean 25 weeks). Collectively, these individuals utilised 77 roost sites in an area spanning 1,075 km by 128 km. Movement patterns varied greatly between individuals, with some travelling long distances. Five individuals travelled cumulative distances >1,000 km over the study period. Five individuals showed net displacements >300 km during one month, including one movement of 500 km within 48 hours. Seasonal movements were consistent with facultative latitudinal migration in part of the population. Flying-foxes shifted roost sites frequently: 64% of roost visits lasted <5 consecutive days, although some individuals remained at one roost for several months. Modal 2-day distances between consecutive roosts were 21-50 km (mean 45 km, range 3-166 km). Of 13 individuals tracked for >12 weeks, 10 moved >100 km in one or more weeks. Median cumulative displacement distances over 1, 10 and 30 weeks were 0 km, 260 km and 821 km, respectively. On average, over increasing time-periods, one additional roost site was visited for each additional 100 km travelled. These findings explain why culling and relocation attempts have had limited success in resolving human-bat conflicts in Australia. Flying-foxes are highly mobile between camps and regularly travel long distances. Consequently, local control actions are likely to have only temporary effects on local flying-fox populations. Developing alternative methods to manage these conflicts remains an important challenge that should be informed by a better understanding of the species' movement patterns.


Assuntos
Migração Animal/fisiologia , Quirópteros/fisiologia , Movimento/fisiologia , Controle de Pragas , Animais , Austrália , Humanos , Masculino , Comportamento de Nidação/fisiologia , Comunicações Via Satélite , Estações do Ano , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA