Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Pathog ; 17(6): e1009644, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34138976

RESUMO

Coronavirus infection induces the unfolded protein response (UPR), a cellular signalling pathway composed of three branches, triggered by unfolded proteins in the endoplasmic reticulum (ER) due to high ER load. We have used RNA sequencing and ribosome profiling to investigate holistically the transcriptional and translational response to cellular infection by murine hepatitis virus (MHV), often used as a model for the Betacoronavirus genus to which the recently emerged SARS-CoV-2 also belongs. We found the UPR to be amongst the most significantly up-regulated pathways in response to MHV infection. To confirm and extend these observations, we show experimentally the induction of all three branches of the UPR in both MHV- and SARS-CoV-2-infected cells. Over-expression of the SARS-CoV-2 ORF8 or S proteins alone is itself sufficient to induce the UPR. Remarkably, pharmacological inhibition of the UPR greatly reduced the replication of both MHV and SARS-CoV-2, revealing the importance of this pathway for successful coronavirus replication. This was particularly striking when both IRE1α and ATF6 branches of the UPR were inhibited, reducing SARS-CoV-2 virion release (~1,000-fold). Together, these data highlight the UPR as a promising antiviral target to combat coronavirus infection.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Vírus da Hepatite Murina/efeitos dos fármacos , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Fator 6 Ativador da Transcrição/metabolismo , Animais , Antivirais/uso terapêutico , Linhagem Celular , Chlorocebus aethiops , Sistemas de Liberação de Medicamentos , Endorribonucleases/metabolismo , Células HEK293 , Humanos , Camundongos , Proteínas Serina-Treonina Quinases/metabolismo , RNA-Seq , Células Vero , Proteínas Virais/metabolismo , Replicação Viral/efeitos dos fármacos
2.
Nat Commun ; 15(1): 8822, 2024 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-39394194

RESUMO

Zika virus (ZIKV), an emerging mosquito-borne flavivirus, is associated with congenital neurological complications. Here, we investigate potential pathological correlates of virus gene expression in representative ZIKV strains through RNA sequencing and ribosome profiling. In addition to the single long polyprotein found in all flaviviruses, we identify the translation of unrecognised upstream open reading frames (uORFs) in the genomic 5' region. In Asian/American strains, ribosomes translate uORF1 and uORF2, whereas in African strains, the two uORFs are fused into one (African uORF). We use reverse genetics to examine the impact on ZIKV fitness of different uORFs mutant viruses. We find that expression of the African uORF and the Asian/American uORF1 modulates virus growth and tropism in human cortical neurons and cerebral organoids, suggesting a potential role in neurotropism. Although the uORFs are expressed in mosquito cells, we do not see a measurable effect on transmission by the mosquito vector in vivo. The discovery of ZIKV uORFs sheds new light on the infection of the human brain cells by this virus and raises the question of their existence in other neurotropic flaviviruses.


Assuntos
Encéfalo , Neurônios , Fases de Leitura Aberta , Infecção por Zika virus , Zika virus , Zika virus/genética , Zika virus/fisiologia , Humanos , Fases de Leitura Aberta/genética , Infecção por Zika virus/virologia , Animais , Encéfalo/virologia , Neurônios/virologia , Neurônios/metabolismo , Replicação Viral , Organoides/virologia , Chlorocebus aethiops , Tropismo Viral , Células Vero , Mosquitos Vetores/virologia , Ribossomos/metabolismo
3.
PLoS Negl Trop Dis ; 17(11): e0010751, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38011286

RESUMO

Chikungunya virus (CHIKV) is a human pathogen causing outbreaks of febrile illness for which vaccines and specific treatments remain unavailable. Autophagy-related (ATG) proteins and autophagy receptors are a set of host factors that participate in autophagy, but have also shown to function in other unrelated cellular pathways. Although autophagy is reported to both inhibit and enhance CHIKV replication, the specific role of individual ATG proteins remains largely unknown. Here, a siRNA screen was performed to evaluate the importance of the ATG proteome and autophagy receptors in controlling CHIKV infection. We observed that 7 out of 50 ATG proteins impact the replication of CHIKV. Among those, depletion of the mitochondrial protein and autophagy receptor BCL2 Interacting Protein 3 (BNIP3) increased CHIKV infection. Interestingly, BNIP3 controls CHIKV independently of autophagy and cell death. Detailed analysis of the CHIKV viral cycle revealed that BNIP3 interferes with the early stages of infection. Moreover, the antiviral role of BNIP3 was found conserved across two distinct CHIKV genotypes and the closely related Semliki Forest virus. Altogether, this study describes a novel and previously unknown function of the mitochondrial protein BNIP3 in the control of the early stages of the alphavirus viral cycle.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Humanos , Vírus Chikungunya/fisiologia , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Replicação Viral/fisiologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Proto-Oncogênicas/metabolismo
4.
Open Biol ; 9(3): 190009, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30862253

RESUMO

Arboviruses that are transmitted to humans by mosquitoes represent one of the most important causes of febrile illness worldwide. In recent decades, we have witnessed a dramatic re-emergence of several mosquito-borne arboviruses, including dengue virus (DENV), West Nile virus (WNV), chikungunya virus (CHIKV) and Zika virus (ZIKV). DENV is currently the most common mosquito-borne arbovirus, with an estimated 390 million infections worldwide annually. Despite a global effort, no specific therapeutic strategies are available to combat the diseases caused by these viruses. Multiple cellular pathways modulate the outcome of infection by either promoting or hampering viral replication and/or pathogenesis, and autophagy appears to be one of them. Autophagy is a degradative pathway generally induced to counteract viral infection. Viruses, however, have evolved strategies to subvert this pathway and to hijack autophagy components for their own benefit. In this review, we will focus on the role of autophagy in mosquito-borne arboviruses with emphasis on DENV, CHIKV, WNV and ZIKV, due to their epidemiological importance and high disease burden.


Assuntos
Alphavirus/fisiologia , Autofagia/fisiologia , Culicidae/virologia , Flavivirus/fisiologia , Mosquitos Vetores/virologia , Replicação Viral/fisiologia , Animais , Interações Hospedeiro-Patógeno , Humanos , Infecções por Vírus de RNA/fisiopatologia , Infecções por Vírus de RNA/virologia
5.
PLoS Negl Trop Dis ; 11(10): e0005981, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29045406

RESUMO

BACKGROUND: Due to the high burden of dengue disease worldwide, a better understanding of the interactions between dengue virus (DENV) and its human host cells is of the utmost importance. Although microRNAs modulate the outcome of several viral infections, their contribution to DENV replication is poorly understood. METHODS AND PRINCIPAL FINDINGS: We investigated the microRNA expression profile of primary human macrophages challenged with DENV and deciphered the contribution of microRNAs to infection. To this end, human primary macrophages were challenged with GFP-expressing DENV and sorted to differentiate between truly infected cells (DENV-positive) and DENV-exposed but non-infected cells (DENV-negative cells). The miRNAome was determined by small RNA-Seq analysis and the effect of differentially expressed microRNAs on DENV yield was examined. Five microRNAs were differentially expressed in human macrophages challenged with DENV. Of these, miR-3614-5p was found upregulated in DENV-negative cells and its overexpression reduced DENV infectivity. The cellular targets of miR-3614-5p were identified by liquid chromatography/mass spectrometry and western blot. Adenosine deaminase acting on RNA 1 (ADAR1) was identified as one of the targets of miR-3614-5p and was shown to promote DENV infectivity at early time points post-infection. CONCLUSION/SIGNIFICANCE: Overall, miRNAs appear to play a limited role in DENV replication in primary human macrophages. The miRNAs that were found upregulated in DENV-infected cells did not control the production of infectious virus particles. On the other hand, miR-3614-5p, which was upregulated in DENV-negative macrophages, reduced DENV infectivity and regulated ADAR1 expression, a protein that facilitates viral replication.


Assuntos
Adenosina Desaminase/metabolismo , Vírus da Dengue/fisiologia , Macrófagos/metabolismo , Macrófagos/virologia , MicroRNAs/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transcriptoma , Adenosina Desaminase/genética , Deleção de Genes , Regulação da Expressão Gênica/imunologia , Humanos , MicroRNAs/genética , Proteínas de Ligação a RNA/genética , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA