Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 174(6): 1571-1585.e11, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30193114

RESUMO

Metabolic diseases are often characterized by circadian misalignment in different tissues, yet how altered coordination and communication among tissue clocks relate to specific pathogenic mechanisms remains largely unknown. Applying an integrated systems biology approach, we performed 24-hr metabolomics profiling of eight mouse tissues simultaneously. We present a temporal and spatial atlas of circadian metabolism in the context of systemic energy balance and under chronic nutrient stress (high-fat diet [HFD]). Comparative analysis reveals how the repertoires of tissue metabolism are linked and gated to specific temporal windows and how this highly specialized communication and coherence among tissue clocks is rewired by nutrient challenge. Overall, we illustrate how dynamic metabolic relationships can be reconstructed across time and space and how integration of circadian metabolomics data from multiple tissues can improve our understanding of health and disease.


Assuntos
Relógios Circadianos/fisiologia , Metaboloma , Animais , Dieta Hiperlipídica , Metabolismo Energético , Fígado/metabolismo , Masculino , Redes e Vias Metabólicas , Metabolômica , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Córtex Pré-Frontal/metabolismo , Núcleo Supraquiasmático/metabolismo , Proteína Desacopladora 1/metabolismo
2.
Cell ; 155(7): 1464-78, 2013 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-24360271

RESUMO

Circadian rhythms and cellular metabolism are intimately linked. Here, we reveal that a high-fat diet (HFD) generates a profound reorganization of specific metabolic pathways, leading to widespread remodeling of the liver clock. Strikingly, in addition to disrupting the normal circadian cycle, HFD causes an unexpectedly large-scale genesis of de novo oscillating transcripts, resulting in reorganization of the coordinated oscillations between coherent transcripts and metabolites. The mechanisms underlying this reprogramming involve both the impairment of CLOCK:BMAL1 chromatin recruitment and a pronounced cyclic activation of surrogate pathways through the transcriptional regulator PPARγ. Finally, we demonstrate that it is specifically the nutritional challenge, and not the development of obesity, that causes the reprogramming of the clock and that the effects of the diet on the clock are reversible.


Assuntos
Relógios Circadianos , Dieta Hiperlipídica , Redes e Vias Metabólicas , Fatores de Transcrição ARNTL/metabolismo , Animais , Proteínas CLOCK/metabolismo , Ritmo Circadiano , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , PPAR gama/metabolismo , Transcriptoma
3.
Cell ; 151(2): 333-343, 2012 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-23063123

RESUMO

Maternal inheritance of mtDNA is the rule in most animals, but the reasons for this pattern remain unclear. To investigate the consequence of overriding uniparental inheritance, we generated mice containing an admixture (heteroplasmy) of NZB and 129S6 mtDNAs in the presence of a congenic C57BL/6J nuclear background. Analysis of the segregation of the two mtDNAs across subsequent maternal generations revealed that proportion of NZB mtDNA was preferentially reduced. Ultimately, this segregation process produced NZB-129 heteroplasmic mice and their NZB or 129 mtDNA homoplasmic counterparts. Phenotypic comparison of these three mtDNA lines demonstrated that the NZB-129 heteroplasmic mice, but neither homoplasmic counterpart, had reduced activity, food intake, respiratory exchange ratio; accentuated stress response; and cognitive impairment. Therefore, admixture of two normal but different mouse mtDNAs can be genetically unstable and can produce adverse physiological effects, factors that may explain the advantage of uniparental inheritance of mtDNA.


Assuntos
DNA Mitocondrial/genética , Camundongos/genética , Animais , Comportamento Animal , Cognição , Feminino , Padrões de Herança , Masculino , Camundongos/fisiologia , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NZB , Especificidade da Espécie
4.
Circ Res ; 131(3): 207-221, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35722884

RESUMO

BACKGROUND: Chronic kidney disease (CKD) is characterized by increased myocardial mass despite near-normal blood pressure, suggesting the presence of a separate trigger. A potential driver is SIRPα (signal regulatory protein alpha)-a mediator impairing insulin signaling. The objective of this study is to assess the role of circulating SIRPα in CKD-induced adverse cardiac remodeling. METHODS: SIRPα expression was evaluated in mouse models and patients with CKD. Specifically, mutant, muscle-specific, or cardiac muscle-specific SIRPα KO (knockout) mice were examined after subtotal nephrectomy. Cardiac function was assessed by echocardiography. Metabolic responses were confirmed in cultured muscle cells or cardiomyocytes. RESULTS: We demonstrate that SIRPα regulates myocardial insulin/IGF1R (insulin growth factor-1 receptor) signaling in CKD. First, in the serum of both mice and patients, SIRPα was robustly secreted in response to CKD. Second, cardiac muscle upregulation of SIRPα was associated with impaired insulin/IGF1R signaling, myocardial dysfunction, and fibrosis. However, both global and cardiac muscle-specific SIRPα KO mice displayed improved cardiac function when compared with control mice with CKD. Third, both muscle-specific or cardiac muscle-specific SIRPα KO mice did not significantly activate fetal genes and maintained insulin/IGF1R signaling with suppressed fibrosis despite the presence of CKD. Importantly, SIRPα directly interacted with IGF1R. Next, rSIRPα (recombinant SIRPα) protein was introduced into muscle-specific SIRPα KO mice reestablishing the insulin/IGF1R signaling activity. Additionally, overexpression of SIRPα in myoblasts and cardiomyocytes impaired pAKT (phosphorylation of AKT) and insulin/IGF1R signaling. Furthermore, myotubes and cardiomyocytes, but not adipocytes treated with high glucose or cardiomyocytes treated with uremic toxins, stimulated secretion of SIRPα in culture media, suggesting these cells are the origin of circulating SIRPα in CKD. Both intracellular and extracellular SIRPα exert biologically synergistic effects impairing intracellular myocardial insulin/IGF1R signaling. CONCLUSIONS: Myokine SIRPα expression impairs insulin/IGF1R functions in cardiac muscle, affecting cardiometabolic signaling pathways. Circulating SIRPα constitutes an important readout of insulin resistance in CKD-induced cardiomyopathy.


Assuntos
Cardiomiopatias , Receptor IGF Tipo 1/metabolismo , Receptores Imunológicos/metabolismo , Insuficiência Renal Crônica , Animais , Cardiomiopatias/etiologia , Cardiomiopatias/metabolismo , Fibrose , Insulina/metabolismo , Camundongos , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Insuficiência Renal Crônica/complicações
5.
FASEB J ; 36(9): e22482, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35947136

RESUMO

Hepatocellular carcinoma (HCC) is a leading cause of cancer deaths, and the most common primary liver malignancy to present in the clinic. With the exception of liver transplant, treatment options for advanced HCC are limited, but improved tumor stratification could open the door to new treatment options. Previously, we demonstrated that the circadian regulator Aryl Hydrocarbon-Like Receptor Like 1 (ARNTL, or Bmal1) and the liver-enriched nuclear factor 4 alpha (HNF4α) are robustly co-expressed in healthy liver but incompatible in the context of HCC. Faulty circadian expression of HNF4α- either by isoform switching, or loss of expression- results in an increased risk for HCC, while BMAL1 gain-of-function in HNF4α-positive HCC results in apoptosis and tumor regression. We hypothesize that the transcriptional programs of HNF4α and BMAL1 are antagonistic in liver disease and HCC. Here, we study this antagonism by generating a mouse model with inducible loss of hepatic HNF4α and BMAL1 expression. The results reveal that simultaneous loss of HNF4α and BMAL1 is protective against fatty liver and HCC in carcinogen-induced liver injury and in the "STAM" model of liver disease. Furthermore, our results suggest that targeting Bmal1 expression in the absence of HNF4α inhibits HCC growth and progression. Specifically, pharmacological suppression of Bmal1 in HNF4α-deficient, BMAL1-positive HCC with REV-ERB agonist SR9009 impairs tumor cell proliferation and migration in a REV-ERB-dependent manner, while having no effect on healthy hepatocytes. Collectively, our results suggest that stratification of HCC based on HNF4α and BMAL1 expression may provide a new perspective on HCC properties and potential targeted therapeutics.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Animais , Carcinogênese/genética , Carcinogênese/patologia , Carcinoma Hepatocelular/metabolismo , Transformação Celular Neoplásica/patologia , Fígado/metabolismo , Neoplasias Hepáticas/metabolismo , Camundongos
6.
Proc Natl Acad Sci U S A ; 117(47): 29904-29913, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33172990

RESUMO

Food is a powerful entrainment cue for circadian clocks in peripheral tissues, and changes in the composition of nutrients have been demonstrated to metabolically reprogram peripheral clocks. However, how food challenges may influence circadian metabolism of the master clock in the suprachiasmatic nucleus (SCN) or in other brain areas is poorly understood. Using high-throughput metabolomics, we studied the circadian metabolome profiles of the SCN and medial prefrontal cortex (mPFC) in lean mice compared with mice challenged with a high-fat diet (HFD). Both the mPFC and the SCN displayed a robust cyclic metabolism, with a strikingly high sensitivity to HFD perturbation in an area-specific manner. The phase and amplitude of oscillations were drastically different between the SCN and mPFC, and the metabolic pathways impacted by HFD were remarkably region-dependent. Furthermore, HFD induced a significant increase in the number of cycling metabolites exclusively in the SCN, revealing an unsuspected susceptibility of the master clock to food stress.


Assuntos
Relógios Circadianos/fisiologia , Dieta Hiperlipídica/efeitos adversos , Metaboloma/fisiologia , Córtex Pré-Frontal/metabolismo , Núcleo Supraquiasmático/metabolismo , Animais , Masculino , Metabolômica , Camundongos , Modelos Animais , Fotoperíodo
7.
J Mol Cell Cardiol ; 158: 115-127, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34081952

RESUMO

RATIONALE: The nutrient sensing mechanistic target of rapamycin complex 1 (mTORC1) and its primary inhibitor, tuberin (TSC2), are cues for the development of cardiac hypertrophy. The phenotype of mTORC1 induced hypertrophy is unknown. OBJECTIVE: To examine the impact of sustained mTORC1 activation on metabolism, function, and structure of the adult heart. METHODS AND RESULTS: We developed a mouse model of inducible, cardiac-specific sustained mTORC1 activation (mTORC1iSA) through deletion of Tsc2. Prior to hypertrophy, rates of glucose uptake and oxidation, as well as protein and enzymatic activity of glucose 6-phosphate isomerase (GPI) were decreased, while intracellular levels of glucose 6-phosphate (G6P) were increased. Subsequently, hypertrophy developed. Transcript levels of the fetal gene program and pathways of exercise-induced hypertrophy increased, while hypertrophy did not progress to heart failure. We therefore examined the hearts of wild-type mice subjected to voluntary physical activity and observed early changes in GPI, followed by hypertrophy. Rapamycin prevented these changes in both models. CONCLUSION: Activation of mTORC1 in the adult heart triggers the development of a non-specific form of hypertrophy which is preceded by changes in cardiac glucose metabolism.


Assuntos
Cardiomegalia/metabolismo , Técnicas de Silenciamento de Genes/métodos , Glucose/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Transdução de Sinais/genética , Animais , Cardiomegalia/dietoterapia , Cardiomegalia/genética , Cardiomegalia/prevenção & controle , Células Cultivadas , Dieta/métodos , Modelos Animais de Doenças , Ativação Enzimática/genética , Glucose-6-Fosfatase/metabolismo , Isomerases/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Miócitos Cardíacos/metabolismo , Oxirredução , Fosforilação/genética , Sirolimo/administração & dosagem , Proteína 2 do Complexo Esclerose Tuberosa/genética , Proteína 2 do Complexo Esclerose Tuberosa/metabolismo
8.
FASEB J ; 34(6): 8265-8282, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32294302

RESUMO

Dynamin-Related-Protein 1 (DRP1) critically regulates mitochondrial and peroxisomal fission in multicellular organisms. However, the impact of DRP1 on other organelles, especially its direct influence on ER functions remains largely unclear. Here, we report that DRP1 translocates to endoplasmic reticulum (ER) in response to ß-adrenergic stimulation. To further investigate the function of DRP1 on ER-lipid droplet (LD) dynamics and the metabolic subsequences, we generated an adipose tissue-specific DRP1 knockout model (Adipo-Drp1flx/flx ). We found that the LDs in adipose tissues of Adipo-Drp1flx/flx mice exhibited more unilocular morphology with larger sizes, and formed less multilocular structures upon cold exposure. Mechanistically, we discovered that abnormal LD morphology occurs because newly generated micro-LDs fail to dissociate from the ER due to DRP1 ablation. Conversely, the ER retention of LDs can be rescued by the overexpressed DRP1 in the adipocytes. The alteration of LD dynamics, combined with abnormal mitochondrial and autophagy functions in adipose tissue, ultimately lead to abnormalities in lipid metabolism in Adipo-Drp1flx/flx mice.


Assuntos
Tecido Adiposo/metabolismo , Dinaminas/metabolismo , Retículo Endoplasmático/metabolismo , Gotículas Lipídicas/metabolismo , Células 3T3 , Adipócitos/metabolismo , Animais , Autofagia/fisiologia , Linhagem Celular , Células HEK293 , Humanos , Metabolismo dos Lipídeos/fisiologia , Masculino , Camundongos , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/fisiologia , Proteínas Mitocondriais/metabolismo
9.
Physiol Rev ; 93(1): 107-35, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23303907

RESUMO

Circadian rhythms occur in almost all species and control vital aspects of our physiology, from sleeping and waking to neurotransmitter secretion and cellular metabolism. Epidemiological studies from recent decades have supported a unique role for circadian rhythm in metabolism. As evidenced by individuals working night or rotating shifts, but also by rodent models of circadian arrhythmia, disruption of the circadian cycle is strongly associated with metabolic imbalance. Some genetically engineered mouse models of circadian rhythmicity are obese and show hallmark signs of the metabolic syndrome. Whether these phenotypes are due to the loss of distinct circadian clock genes within a specific tissue versus the disruption of rhythmic physiological activities (such as eating and sleeping) remains a cynosure within the fields of chronobiology and metabolism. Becoming more apparent is that from metabolites to transcription factors, the circadian clock interfaces with metabolism in numerous ways that are essential for maintaining metabolic homeostasis.


Assuntos
Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/metabolismo , Ritmo Circadiano , Metabolismo Energético , Sono , Vigília , Animais , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Ritmo Circadiano/genética , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Metabolismo Energético/genética , Enzimas/metabolismo , Regulação da Expressão Gênica , Homeostase , Humanos , Vias Neurais/metabolismo , Vias Neurais/fisiopatologia , Sono/genética , Transtornos do Sono do Ritmo Circadiano/metabolismo , Transtornos do Sono do Ritmo Circadiano/fisiopatologia , Vigília/genética
10.
Nucleic Acids Res ; 46(W1): W157-W162, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29912458

RESUMO

Circadian rhythms play a fundamental role at all levels of biological organization. Understanding the mechanisms and implications of circadian oscillations continues to be the focus of intense research. However, there has been no comprehensive and integrated way for accessing and mining all circadian omic datasets. The latest release of CircadiOmics (http://circadiomics.ics.uci.edu) fills this gap for providing the most comprehensive web server for studying circadian data. The newly updated version contains high-throughput 227 omic datasets corresponding to over 74 million measurements sampled over 24 h cycles. Users can visualize and compare oscillatory trajectories across species, tissues and conditions. Periodicity statistics (e.g. period, amplitude, phase, P-value, q-value etc.) obtained from BIO_CYCLE and other methods are provided for all samples in the repository and can easily be downloaded in the form of publication-ready figures and tables. New features and substantial improvements in performance and data volume make CircadiOmics a powerful web portal for integrated analysis of circadian omic data.


Assuntos
Ritmo Circadiano , Software , Ritmo Circadiano/genética , Perfilação da Expressão Gênica , Internet , Metabolômica
11.
Int J Obes (Lond) ; 43(3): 567-580, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-29795456

RESUMO

OBJECTIVE: Nutrient challenge in the form of a high fat (HF) diet causes a reversible reprogramming of the hepatic circadian clock. This depends in part on changes in the recruitment of the circadian transcription factor BMAL1 to genome targets, though the causes and extent of disruption to hepatic and extra-hepatic BMAL1 are unknown. The objective of the study was to determine whether HF diet-induced alterations in BMAL1 function occur across insulin-resistant tissues and whether this could be reversed by restoring whole body insulin sensitivity. METHODS: BMAL1 subcellular localization and target recruitment was analyzed in several metabolically active peripheral tissues, including liver, muscle, and adipose tissue under conditions of diet-induced obesity. Animals made obese with HF diet were subsequently treated with rosiglitazone to determine whether resensitizing insulin-resistant tissues to insulin restored hepatic and extra-hepatic BMAL1 function. RESULTS: These data reveal that both hepatic and extra-hepatic BMAL1 activity are altered under conditions of obesity and insulin resistance. Restoring whole body insulin sensitivity by treatment with the antidiabetic drug rosiglitazone is sufficient to restore changes in HF diet-induced BMAL1 recruitment and activity in several tissues. CONCLUSIONS: This study reveals that a key mechanism by which HF diet interferes with clock function in peripheral tissues is via the development of insulin resistance.


Assuntos
Fatores de Transcrição ARNTL/metabolismo , Dieta Hiperlipídica , Hipoglicemiantes/farmacologia , Rosiglitazona/farmacologia , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Glicemia/efeitos dos fármacos , Insulina/sangue , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo
12.
EMBO Rep ; 17(9): 1292-303, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27418314

RESUMO

The liver circadian clock is reprogrammed by nutritional challenge through the rewiring of specific transcriptional pathways. As the gut microbiota is tightly connected to host metabolism, whose coordination is governed by the circadian clock, we explored whether gut microbes influence circadian homeostasis and how they distally control the peripheral clock in the liver. Using fecal transplant procedures we reveal that, in response to high-fat diet, the gut microbiota drives PPARγ-mediated activation of newly oscillatory transcriptional programs in the liver. Moreover, antibiotics treatment prevents PPARγ-driven transcription in the liver, underscoring the essential role of gut microbes in clock reprogramming and hepatic circadian homeostasis. Thus, a specific molecular signature characterizes the influence of the gut microbiome in the liver, leading to the transcriptional rewiring of hepatic metabolism.


Assuntos
Relógios Circadianos , Dieta Hiperlipídica , Microbioma Gastrointestinal , Fígado/metabolismo , PPAR gama/metabolismo , Animais , Antibacterianos/farmacologia , Glicemia , Relógios Circadianos/efeitos dos fármacos , Relógios Circadianos/genética , Ritmo Circadiano , Análise por Conglomerados , Metabolismo Energético/genética , Transplante de Microbiota Fecal , Microbioma Gastrointestinal/efeitos dos fármacos , Perfilação da Expressão Gênica , Humanos , Masculino , Camundongos , Transdução de Sinais
13.
Adv Exp Med Biol ; 1090: 79-103, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30390286

RESUMO

Our body not only responds to environmental changes but also anticipates them. The light and dark cycle with the period of about 24 h is a recurring environmental change that determines the diurnal variation in food availability and safety from predators in nature. As a result, the circadian clock is evolved in most animals to align locomotor behaviors and energy metabolism with the light cue. The central circadian clock in mammals is located at the suprachiasmatic nucleus (SCN) of the hypothalamus in the brain. We here review the molecular and anatomic architecture of the central circadian clock in mammals, describe the experimental and observational evidence that suggests a critical role of the central circadian clock in shaping systemic energy metabolism, and discuss the involvement of endocrine factors, neuropeptides, and the autonomic nervous system in the metabolic functions of the central circadian clock.


Assuntos
Relógios Circadianos , Metabolismo Energético , Núcleo Supraquiasmático/fisiologia , Animais , Sistema Nervoso Autônomo/fisiologia , Ritmo Circadiano , Sistema Endócrino/fisiologia
14.
Adv Exp Med Biol ; 1090: C1, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31264144

RESUMO

The below correction has been carried out in the page 93 of the current version.

15.
J Biol Chem ; 291(6): 2812-28, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26644470

RESUMO

Diagnosis and therapeutic interventions in pathological conditions rely upon clinical monitoring of key metabolites in the serum. Recent studies show that a wide range of metabolic pathways are controlled by circadian rhythms whose oscillation is affected by nutritional challenges, underscoring the importance of assessing a temporal window for clinical testing and thereby questioning the accuracy of the reading of critical pathological markers in circulation. We have been interested in studying the communication between peripheral tissues under metabolic homeostasis perturbation. Here we present a comparative circadian metabolomic analysis on serum and liver in mice under high fat diet. Our data reveal that the nutritional challenge induces a loss of serum metabolite rhythmicity compared with liver, indicating a circadian misalignment between the tissues analyzed. Importantly, our results show that the levels of serum metabolites do not reflect the circadian liver metabolic signature or the effect of nutritional challenge. This notion reveals the possibility that misleading reads of metabolites in circulation may result in misdiagnosis and improper treatments. Our findings also demonstrate a tissue-specific and time-dependent disruption of metabolic homeostasis in response to altered nutrition.


Assuntos
Proteínas Sanguíneas/metabolismo , Ritmo Circadiano , Gorduras na Dieta/farmacologia , Fígado/metabolismo , Animais , Masculino , Metabolômica , Camundongos
16.
J Neurochem ; 138(5): 650-2, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27554418

RESUMO

Studies have demonstrated a pronounced dependence of memory formation on circadian time; however, the numerous mechanisms underlying this reliance are only beginning to be understood. While the 24-h cellular clock controls various aspects of hippocampal memory formation, its consolidation in particular (i.e., its conversion from short-term to long-term memory), appears to be heavily dependent on circadian activity in hippocampal neurons. Hippocampal memory consolidation requires phosphorylation of the cAMP Response Element-Binding protein, CREB, which upon phosphorylation promotes the transcription of genes necessary for long-term memory formation. Rhythmic cAMP/ERK-MAPK activity upstream of CREB is a necessary component. This Editorial highlights a study by Rawashdeh and coworkers, in which the authors establish the circadian clock gene Period1 (Per1) as a regulator of CREB phosphorylation in the mouse hippocampus, and thus reveal a functional link between circadian rhythms and learning efficiency. Read the highlighted article 'Period1 gates the circadian modulation of memory-relevant signaling in mouse hippocampus by regulating the nuclear shuttling of the CREB kinase pP90RSK' on page 731.

17.
Bioinformatics ; 31(19): 3181-8, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26049162

RESUMO

MOTIVATION: Circadian oscillations have been observed in animals, plants, fungi and cyanobacteria and play a fundamental role in coordinating the homeostasis and behavior of biological systems. Genetically encoded molecular clocks found in nearly every cell, based on negative transcription/translation feedback loops and involving only a dozen genes, play a central role in maintaining these oscillations. However, high-throughput gene expression experiments reveal that in a typical tissue, a much larger fraction ([Formula: see text]) of all transcripts oscillate with the day-night cycle and the oscillating species vary with tissue type suggesting that perhaps a much larger fraction of all transcripts, and perhaps also other molecular species, may bear the potential for circadian oscillations. RESULTS: To better quantify the pervasiveness and plasticity of circadian oscillations, we conduct the first large-scale analysis aggregating the results of 18 circadian transcriptomic studies and 10 circadian metabolomic studies conducted in mice using different tissues and under different conditions. We find that over half of protein coding genes in the cell can produce transcripts that are circadian in at least one set of conditions and similarly for measured metabolites. Genetic or environmental perturbations can disrupt existing oscillations by changing their amplitudes and phases, suppressing them or giving rise to novel circadian oscillations. The oscillating species and their oscillations provide a characteristic signature of the physiological state of the corresponding cell/tissue. Molecular networks comprise many oscillator loops that have been sculpted by evolution over two trillion day-night cycles to have intrinsic circadian frequency. These oscillating loops are coupled by shared nodes in a large network of coupled circadian oscillators where the clock genes form a major hub. Cells can program and re-program their circadian repertoire through epigenetic and other mechanisms. AVAILABILITY AND IMPLEMENTATION: High-resolution and tissue/condition specific circadian data and networks available at http://circadiomics.igb.uci.edu. CONTACT: pfbaldi@ics.uci.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/metabolismo , Ritmo Circadiano/fisiologia , Regulação da Expressão Gênica , Metabolômica/métodos , Transcriptoma , Animais , Camundongos , Especificidade de Órgãos , Fatores de Tempo
18.
Proc Natl Acad Sci U S A ; 110(9): 3339-44, 2013 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-23341599

RESUMO

The circadian clock is constituted by a complex molecular network that integrates a number of regulatory cues needed to maintain organismal homeostasis. To this effect, posttranslational modifications of clock proteins modulate circadian rhythms and are thought to convert physiological signals into changes in protein regulatory function. To explore reversible lysine acetylation that is dependent on the clock, we have characterized the circadian acetylome in WT and Clock-deficient (Clock(-/-)) mouse liver by quantitative mass spectrometry. Our analysis revealed that a number of mitochondrial proteins involved in metabolic pathways are heavily influenced by clock-driven acetylation. Pathways such as glycolysis/gluconeogenesis, citric acid cycle, amino acid metabolism, and fatty acid metabolism were found to be highly enriched hits. The significant number of metabolic pathways whose protein acetylation profile is altered in Clock(-/-) mice prompted us to link the acetylome to the circadian metabolome previously characterized in our laboratory. Changes in enzyme acetylation over the circadian cycle and the link to metabolite levels are discussed, revealing biological implications connecting the circadian clock to cellular metabolic state.


Assuntos
Ritmo Circadiano , Redes e Vias Metabólicas , Mitocôndrias/metabolismo , Acetilação , Animais , Proteínas CLOCK/deficiência , Proteínas CLOCK/metabolismo , Ritmo Circadiano/genética , Análise por Conglomerados , Lisina/metabolismo , Masculino , Redes e Vias Metabólicas/genética , Metaboloma/genética , Camundongos , Mitocôndrias/genética , Peptídeos/metabolismo , Proteoma/metabolismo , Transcriptoma/genética
19.
Proc Natl Acad Sci U S A ; 110(24): E2239-48, 2013 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-23729813

RESUMO

Obesity is an epidemic, calling for innovative and reliable pharmacological strategies. Here, we show that ShK-186, a selective and potent blocker of the voltage-gated Kv1.3 channel, counteracts the negative effects of increased caloric intake in mice fed a diet rich in fat and fructose. ShK-186 reduced weight gain, adiposity, and fatty liver; decreased blood levels of cholesterol, sugar, HbA1c, insulin, and leptin; and enhanced peripheral insulin sensitivity. These changes mimic the effects of Kv1.3 gene deletion. ShK-186 did not alter weight gain in mice on a chow diet, suggesting that the obesity-inducing diet enhances sensitivity to Kv1.3 blockade. Several mechanisms may contribute to the therapeutic benefits of ShK-186. ShK-186 therapy activated brown adipose tissue as evidenced by a doubling of glucose uptake, and increased ß-oxidation of fatty acids, glycolysis, fatty acid synthesis, and uncoupling protein 1 expression. Activation of brown adipose tissue manifested as augmented oxygen consumption and energy expenditure, with no change in caloric intake, locomotor activity, or thyroid hormone levels. The obesity diet induced Kv1.3 expression in the liver, and ShK-186 caused profound alterations in energy and lipid metabolism in the liver. This action on the liver may underlie the differential effectiveness of ShK-186 in mice fed a chow vs. an obesity diet. Our results highlight the potential use of Kv1.3 blockers for the treatment of obesity and insulin resistance.


Assuntos
Resistência à Insulina , Canal de Potássio Kv1.3/antagonistas & inibidores , Obesidade/prevenção & controle , Proteínas/farmacologia , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Adiposidade/efeitos dos fármacos , Animais , Glicemia/metabolismo , Dieta , Ingestão de Energia/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Fígado Gorduroso/metabolismo , Fígado Gorduroso/fisiopatologia , Fígado Gorduroso/prevenção & controle , Canal de Potássio Kv1.3/genética , Canal de Potássio Kv1.3/fisiologia , Leptina/sangue , Lipídeos/sangue , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Obesidade/genética , Obesidade/fisiopatologia , Consumo de Oxigênio/efeitos dos fármacos , Aumento de Peso/efeitos dos fármacos
20.
J Biol Chem ; 289(9): 6091-7, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24425865

RESUMO

The circadian clock regulates a wide range of physiological and metabolic processes, and its disruption leads to metabolic disorders such as diabetes and obesity. Accumulating evidence reveals that the circadian clock regulates levels of metabolites that, in turn, may regulate the clock. Here we demonstrate that the circadian clock regulates the intracellular levels of acetyl-CoA by modulating the enzymatic activity of acetyl-CoA Synthetase 1 (AceCS1). Acetylation of AceCS1 controls the activity of the enzyme. We show that acetylation of AceCS1 is cyclic and that its rhythmicity requires a functional circadian clock and the NAD(+)-dependent deacetylase SIRT1. Cyclic acetylation of AceCS1 contributes to the rhythmicity of acetyl-CoA levels both in vivo and in cultured cells. Down-regulation of AceCS1 causes a significant decrease in the cellular acetyl-CoA pool, leading to reduction in circadian changes in fatty acid elongation. Thus, a nontranscriptional, enzymatic loop is governed by the circadian clock to control acetyl-CoA levels and fatty acid synthesis.


Assuntos
Acetato-CoA Ligase/metabolismo , Relógios Circadianos/fisiologia , Ácidos Graxos/biossíntese , Sirtuína 1/metabolismo , Acetato-CoA Ligase/genética , Acetilação , Animais , Células Cultivadas , Ácidos Graxos/genética , Camundongos , Camundongos Knockout , NAD/genética , NAD/metabolismo , Sirtuína 1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA