RESUMO
The conversion of the thiols 4-aminothiophenol (ATP) and 4-nitrothiophenol (NTP) can be considered as one of the standard reactions of plasmon-induced catalysis and thus has already been the subject of numerous studies. Currently, two reaction pathways are discussed: one describes a dimerization of the starting material yielding 4,4'-dimercaptoazobenzene (DMAB), while in the second pathway, it is proposed that NTP is reduced to ATP in HCl solution. In this combined experimental and theoretical study, we disentangled the involved plasmon-mediated reaction mechanisms by carefully controlling the reaction conditions in acidic solutions and vapor. Motivated by the different surface-enhanced Raman scattering (SERS) spectra of NTP/ATP samples and band shifts in acidic solution, which are generally attributed to water, additional experiments under pure gaseous conditions were performed. Under such acidic vapor conditions, the Raman data strongly suggest the formation of a hitherto not experimentally identified stable compound. Computational modeling of the plasmonic hybrid systems, i.e., regarding the wavelength-dependent character of the involved electronic transitions of the detected key intermediates in both reaction pathways, confirmed the experimental finding of the new compound, namely, 4-nitrosothiophenol (TP*). Tracking the reaction dynamics via time-dependent SERS measurements allowed us to establish the link between the dimer- and monomer-based pathways and to suggest possible reaction routes under different environmental conditions. Thereby, insight at the molecular level was provided with respect to the thermodynamics of the underlying reaction mechanism, complementing the spectroscopic results.
RESUMO
Plasmon-driven reactions on metal nanoparticles feature rich and complex mechanistic contributions, involving a manifold of electronic states, near-field enhancement, and heat, among others. Although localized surface plasmon resonances are believed to initiate these reactions, the complex reactivity demands deeper exploration. This computational study investigates factors influencing chemical processes on plasmonic nanoparticles, exemplified by protonation of 4-mercaptopyridine (4-MPY) on silver nanoparticles. We examine the impact of molecular binding modes and molecule-molecule interactions on the nanoparticle's surface, near-field electromagnetic effects, and charge-transfer phenomena. Two proton sources were considered at ambient conditions, molecular hydrogen and water. Our findings reveal that the substrate's binding mode significantly affects not only the energy barriers governing the thermodynamics and kinetics of the reaction but also determine the directionality of light-driven charge-transfer at the 4-MPY-Ag interface, pivotal in the chemical contribution involved in the reaction mechanism. In addition, significant field enhancement surrounding the adsorbed molecule is observed (eletromagnetic contribution) which was found insufficient to modify the ground state thermodynamics. Instead, it initiates and amplifies light-driven charge-transfer and thus modulates the excited states' reactivity in the plasmonic-molecular hybrid system. This research elucidates protonation mechanisms on silver surfaces, highlighting the role of molecular-surface and molecule-molecule-surface orientation in plasmon-catalysis.
RESUMO
Noble metal nanostructures can efficiently harvest electromagnetic radiation, which, in turn, is used to generate localized surface plasmon resonances. Surface plasmons decay, producing hot carriers, that is, short-lived species that can trigger chemical reactions on metallic surfaces. However, noble metal nanostructures catalyze only a very small number of chemical reactions. This limitation can be overcome by coupling such nanostructures with catalytic-active metals. Although the role of such catalytically active metals in plasmon-driven catalysis is well-understood, the mechanistics of a noble metal antenna in such chemistry remains unclear. In this study, we utilize tip-enhanced Raman spectroscopy, an innovative nanoscale imaging technique, to investigate the rates and yields of plasmon-driven reactions on mono- and bimetallic gold- and silver-based nanostructures. We found that silver nanoplates (AgNPs) demonstrate a significantly higher yield of 4-nitrobenzenehtiol to p,p'-dimercaptoazobisbenzene (DMAB) reduction than gold nanoplates (AuNPs). We also observed substantially greater yields of DMAB on silver-platinum and silver-palladium nanoplates (Ag@PtNPs and Ag@PdNPs) compared to their gold analogues, Au@PtNPs and Au@PdNPs. Furthermore, Ag@PtNPs exhibited enhanced reactivity in 4-mercatophenylmethanol to 4-mercaptobenzoic acid oxidation compared to Au@PtNPs. These results showed that silver-based bimetallic nanostructures feature much greater reactivity compared to their gold-based analogues.
RESUMO
Noble metal nanostructures absorb light producing coherent oscillations of the metal's electrons, so-called localized surface plasmon resonances (LSPRs). LSPRs can decay generating hot carriers, highly energetic species that trigger chemical transformations in the molecules located on the metal surfaces. The number of chemical reactions can be expanded by coupling noble and catalytically active metals. However, it remains unclear whether such mono- and bimetallic nanostructures possess any sensitivity toward one or another chemical reaction if both of them can take place in one molecular analyte. In this study, we utilize tip-enhanced Raman spectroscopy (TERS), an emerging analytical technique that has single-molecule sensitivity and sub-nanometer spatial resolution, to investigate plasmon-driven reactivity of 2-nitro-5-thiolobenzoic acid (2-N-5TBA) on gold and gold@palladium nanoplates (AuNPs and Au@PdNPs). This molecular analyte possesses both nitro and carboxyl groups, which can be reduced or removed by hot carriers. We found that on AuNPs, 2-N-5TBA dimerized forming 4,4'-dimethylazobenzene (DMAB), the bicarbonyl derivative of DMAB, as well as 4-nitrobenzenethiol (4-NBT). Our accompanying theoretical investigation based on density functional theory (DFT) and time-dependent density functional theory (TDDFT) confirmed these findings. The theoretical analysis shows that 2-N-5TBA first dimerized forming the bicarbonyl derivative of DMAB, which then decarboxylated forming DMAB. Finally, DMAB can be further reduced leading to 4-NBT. This reaction mechanism is supported by TERS-determined yields on these three molecules on AuNPs. We also found that on Au@PdNPs, 2-N-5TBA first formed the bicarbonyl derivative of DMAB, which is then reduced to both bihydroxyl-DMAB and 4-amino-3-mercaptobenzoic acid. The yield of these reaction products on Au@PdNPs strictly follows the free-energy potential of these molecules on the metallic surfaces.
RESUMO
Well-designed plasmonic nanostructures can mediate far and near optical fields and thereby enhance light-matter interactions. To obtain the best overall enhancement, structural parameters need to be carefully tuned to obtain the largest enhancement at the input and output frequencies. This is, however, challenging for nonlinear light-matter interactions involving multiple frequencies because obtaining the full picture of structure-dependent enhancement at individual frequencies is not easy. In this work, we introduce the platform of plasmonic Doppler grating (PDG) to experimentally investigate the enhancement effect of plasmonic gratings in the input and output beams of nonlinear surface-enhanced coherent anti-Stokes Raman scattering (SECARS). PDGs are designable azimuthally chirped gratings that provide broadband and spatially dispersed plasmonic enhancement. Therefore, they offer the opportunity to observe and compare the overall enhancement from different combinations of enhancement in individual input and output beams. We first confirm PDG's capability of spatially separating the input and output enhancement in linear surface-enhanced fluorescence and Raman scattering. We then investigate spatially resolved enhancement in nonlinear SECARS, where coherent interaction of the pump, Stokes, and anti-Stokes beams is enhanced by the plasmonic gratings. By mapping the SECARS signal and analyzing the azimuthal angle-dependent intensity, we characterize the enhancement at individual frequencies. Together with theoretical analysis, we show that while simultaneous enhancement in the input and output beams is important for SECARS, the enhancement in the pump and anti-Stokes beams plays a more critical role in the overall enhancement than that in the Stokes beam. This work provides an insight into the enhancement mechanism of plasmon-enhanced spectroscopy, which is important for the design and optimization of plasmonic gratings. The PDG platform may also be applied to study enhancement mechanisms in other nonlinear light-matter interactions or the impact of plasmonic gratings on the fluorescence lifetime.